Full metadata record
DC FieldValueLanguage
dc.contributor.departmentДепартаментen_US
dc.date.accessioned2025-09-01T09:04:42Z-
dc.date.available2025-09-01T09:04:42Z-
dc.date.issued2022-04-01-
dc.identifierDspace\SGAU\20250901\75873ru
dc.identifier.urihttp://repo.ssau.ru/jspui/handle/123456789/38692-
dc.descriptionописаниеen_US
dc.format.mimetypetexten_US
dc.textpart75 and was obtained with a coefficient multiplier equal to 1 and a coefficient decrement equal to 0.01. A neural network trained with these parameters will be used for further training. VI. NEURAL NETWORK TRAINING WITH A TEACHER The Kohonen network is self-learning, however, to improve the accuracy of classification, teacher training can also be used, in particular, the vector quantization algorithm (LVQ). The essence of this algorithm is to change the class parameters (mixing the ...-
dc.subjectаen_US
dc.subjectбen_US
dc.titleТестовая запись №3en_US
dc.typeOtheren_US
local.contributor.authorИванов-
Appears in Collections:Тестовая коллекция

Files in This Item:
File Description SizeFormat 
extpaperF.pdf443.08 kBAdobe PDFView/Open
тест_Тест_2025.pdf770.35 kBAdobe PDFView/Open


Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.