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Abstract  

Topography is the study of an area on the earth's surface. This term relates to the land's slope 
or contour, which is the interval of elevation differences between two adjacent and parallel contour 
lines. Topography generally presents a three-dimensional model of object surface relief and an 
identification of land or hilly areas based on horizontal coordinates such as latitude and longitude, 
and vertical position, namely elevation. The topography is essential information that must be pro-
vided in the execution of building or road construction based on the ground contour. The problem 
which is the ground contour which can provide visualization topography as a three-dimensional 
(3D) condition of the ground contour is not normal (non-linear). Another problem is that the tradi-
tional measurement techniques with wheel rotation only measure distances and cannot represent 
the trajectory of the ground contour in 3D. The proposed in-depth evaluation of orientation estima-
tion results in the topography accuracy level. This methodology consists of several processes; Iner-
tia and orientation of an object, Distance measurement, Terrestrial topocentric - Euclidean trans-
formation, and Topography visualization. This research designed a prototype and proposed a new 
visualization method of the ground contours to reconstruct a topography map between three algo-
rithms; Direct Cosine Matrix-3D Coordinate, Madgwick-3D Coordinate, and Complementary Fil-
ter. The methodology was tested and evaluated intensively by direct observation at three meas-
urement locations with different difficulty levels. As a result, the Direct Cosine Matrix-3D Coor-
dinate is able to visualize the ground contours by reconstructing a topography map much better 
than other methods. 
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Introduction 

Computer science has been widely applied and im-
plemented with existing technological advances in com-
puter vision [1]. Computer science enables the function to 
visualize or see, identify the object, process images using 
data in the likewise process human vision does, and then 
deliver the appropriate output. One example of computer 
science image processses is creating and reconstructing 
3D images for topographic maps. 

A topographic map is a map that contains general in-
formation about the state of the land surface and infor-
mation on its elevation using contour lines, namely the 
dividing lines, which are the locations of points with the 
same height to a particular surface reference of ground 
contour [2]. Contour is an imaginary line that is not 
straight but turns on the earth's surface, connecting points 
equal in height from sea level on the topographic map. 

Meanwhile, the contour interval is the vertical distance 
between two height lines (the elevation differences be-
tween two adjacent and parallel contour lines) determined 
based on the scale [3]. A contour interval helps to build 
construction design planning [4]. The contour lines are 
sparse lines based on the linear estimated lines of the ele-
vation changes, which are generally performed to fill in 
the gaps between two elevation points. In effect, the ele-
vation information between the two contour lines is un-
known. The process of identifying contour lines in indi-
vidual subjects is a statistical analysis approach; adding 
straight points (linear lines) cannot be done. 

Fig. 1 shows contour lines and contour intervals (ele-
vation lines) on the map (the two-dimensional plane in 
the bottom image) and a land surface that has different 
ground contour (three-dimensional space in the top im-
age). The results of the two contours form a winding and 
closed line based on the dots' results. 
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Fig. 1. The illustration of contour lines and contour interval 

on the topographic maps 

A three-dimensional model makes it easier to read the 
contours of a place above the earth's surface because each 
height of line's height is immediately visible, rather than 
reading the two-dimensional model as shown in fig. 1 
(bottom row). The research conducted by [5] to recon-
struct a 3D requires data acquisition of multiple images 
from polarization experiments based on degrees and an-
gles. However, the reconstruction of a 3D visual for a 
topographic map requires data acquisition of inertia and 
distance measurements. The input data in the form of a 
topographic map are analyzed and processed into a three-
dimensional object model output to achieve this. The re-
search proposed a solution to overcome these limitations 
by making a topographic map visually utilizing inertia 
data and distance measurements. 

Designing ground contour is interval estimation (in 
the future, it will be referred to as ground contour estima-
tion) which can be viewed from another perspective, 
namely the three-dimensional (3D) trajectory of a moving 
system estimation. Visualization in three dimensions 
(3D) by utilizing the orientation's attitude as the object's 
points from the scene will make to understand the algo-
rithm from analyzing ground contour estimating two 
methods: DCM and Madgwick [6]. Toward visualiza-
tion of the ground contour estimation in 3D, Dead reck-
oning and odometry are scanning techniques utilizing 
the counter of wheel rotation [7] and inertia sensor 
modules [8 – 10]. 

Measurement is an activity comparing a measured-
quantity with a measuring instrument; everything in 
shape must have a size, length, height, weight, volume, or 
dimensions. The distance measuring tool is one of the 
civil works measuring tools in recording a road length, as 
shown in fig. 2.  

The measurement technique used is to enumerate dis-
tance using a manual tool based on wheel rotation. Some 
distance measuring instruments have been designed to 
measure and record distances automatically by utilizing a 
rotary encoder sensor. A rotary encoder is an electrome-
chanical device that can monitor and control movement 
and position [12]. A rotary encoder uses an optical sensor 
that produces a serial pulse that can be interpreted as in-
formation on movement, position, and direction.   

The disadvantage of traditional measuring wheels is 
their inability to estimate 3D trajectories because the re-
sult of measurements as odometry is entirely dependent 
on the measurement of wheel rotation, which in turn the 
resulting trajectory is only in 2D. 

 
Fig. 2. The tools of measuring the distance with rotation 

 of the wheels [11] 

Representing a topographic map is a complicated pro-
cess, but this process can be simplified with the help of a 
computer graphics application. For example [12], sug-
gests to make a topographic map (example, a vector for-
mat, raster format, or printed on paper) based on data 
sources INSPIRE (Infrastructure for Spatial Information 
in the European Community) [13]. Indonesia developed 
the National Geospatial Information Network (NIGN) in-
tending to apply the principles of one standard, one refer-
ence, one database, and one geoportal in the management 
of Geospatial Information so that it can be used as a ref-
erence for spatial data, spatial planning, sustainable natu-
ral resource management, and policy formulation and de-
cision making. There are 7 (seven) main aspects of NIGN 
[14 – 15]: regional and inter-state boundaries, forestry ar-
eas, spatial planning, infrastructure, licensing and land, 
natural resources and the environment, particular areas, 
and transmigration. For example, aspects related to our 
research are spatial planning, infrastructure related to civ-
il works, and the need for topographic maps. The engi-
neers in space geodesy in the MIIGAiK approve solution 
of the fundamental geodetic problem using tools and 
methods of space geodesy [16 – 17] and another research-
er in the field of aerial photography about the terrain and 
survey of the object which uses drone [18].  

Numerous researchers have explored and extracted 
geographic information from scanned topographic maps 
(STM). Their approaches are grouped into two categories 
which are segmentation and vectorization [19]. The other 
method is based on the appearance on topography maps 
from Google Earth which is converted into X, Y, Z coor-
dinates. The coordinates can be mapped in the form of a 
three-dimensional map showing the hills' slope [20]. 
However, Google Maps being obtained from satellite im-
age information in making topographic maps have weak-
nesses. One of the weaknesses is to predict the slope or 
the surface height of the land contour, especially in hilly 
areas where there are a lot of trees that make satellite im-
ages difficult to obtain valid values. The research [21] to 
reductions the cost and time of experimental investigation 
of the topography modeling using Gaussian and non-
Gaussian of the highest probability distribution. 
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On the other hand, Dead-Reckoning can produce 3D 
trajectories, but since it depends entirely on accelerome-
ter sensor measurements, the error accumulation occurs 
significantly [22, 23]. Odometry could perform a position 
measurement more accurate than dead reckoning because 
it combines an optical-based rotary encoder attached to 
the wheel, which has higher degree of accuracy in meas-
uring distance. This research focuses on visualizing topo-
graphic maps which can be the accurate three-
dimensional ground-contour measure that will get a land 
contour plot based on non-linear and continuous data. 

1. Literature study 
1.1. Topographic map 

The topographic map is a view of land containing 
general information about the state of the land surface 
and information on its height using contour lines, namely 
the dividing line, which is the location of points with the 
same height to a specific reference plane (guide-
line / reference). 

The altitude line aims to find out how high a place is 
from the sea level. The height line has the following 
characteristics: 

a) The lower altitude line continuously circles the 
higher altitude line. 

b) The height lines must not intersect each other and 
must not branch. 

c) On sloping areas, the elevation lines are far apart. 
On the contrary, in steep areas, the elevation lines 
are close each other. For special regional condi-
tions (such as cliffs, craters, ravines), the elevation 
line is mainly drawn. 

d) The elevation line that juts out is a ridge and is 
always in the shape of the letter 'U'. 

e) The inward indentation of the elevation line is a 
valley and is always like the shape of letter 'V'. 

f) The height difference between two successive ele-
vation lines (interval) is half thousand scales (ex-
ample: 1 / 2000 × 50.000 = 25 meters). Unless oth-
erwise stated. 

g) The helper height line represents the height be-
tween two consecutive height lines. 

h) The color of the elevation lines on the map is de-
picted in a specific color (usually brown). 

1.2. Orientation representation 

The orientation of a system can be described with 
several representations, including matrix representa-
tion and quaternion representation. Each has its own 
operating rules. 

1.3. Rotation matrix 

Rotation is a basic of motion of a particular space 
from geometry in physics. A rotation is the motion of a 
rigid body around a fixed point and preserves one point 
differently. Based on Euler's rotation theorem from 
geometry in 3D, a rigid body's displacement is equivalent 

to a single rotation about some axis that runs through the 
fixed point [24, 25]. The theoretical and applied rotation 
matrices are discussed in rigid body mechanics, robotics, 
spacecraft attitude dynamics, navigation, three-
dimensional, and computer graphics. The proven use of 
rotation matrices to realize rotations in ℝ3 by [26 – 28] ar-
ranges the Euler parameters in quaternion form. They 
compute the double quaternion representation of rotations 
in four dimensions from 4 × 4 rotation matrices. 

A rotation matrix is a matrix used in linear algebra to 
perform a rotation (roll, pitch, dan yaw) in Euclidean 
space. The rotation matrix used to represent an 
orientation in 3D space is a 3 × 3 matrix in matrix form as 
follows (1), where the notation describes the orientation 
of the b coordinate frame (body) to the navigation coor-
dinates n. 

11 12 13

21 22 23

31 32 33

.

 
    
  

n
b

r r r

R R r r r

r r r

 (1) 

The elements represente by rij, in which variable i (the 
row) and j (the column) are the angles between the i-axis 
in the navigation coordinates and the j-axis in the body 
coordinates. The relationship between vectors in body 
coordinates, rotation matrix, and vectors in navigation 
coordinates can be represented below. 

,n bV RV  (2) 

where R is the rotation matrix, Vn is the vector of the 
navigation coordinates, and Vn is the vector of the body 
coordinates. 

In Euler's method, the transformation from one 
coordinate form into another form can construct three 
successive rotations with different axes. The 
transformation can be from one coordinate form into a 
new coordinate form which can be expressed as follows: 

Rotation through the x-axis of the body is called the 
roll angle (Φ). The rotation angle of the roll on the x-axis 
uses the R1 matrix with equation (3). 

1

1 0 0

0 cos sin .

0 sin cos

 
     
   

R  (3) 

The rotation through the y-axis of the body is called 
the pitch angle (θ). The representation for the rotation of 
the pitch angle on the y-axis uses the R2 matrix with 
equation (4). 

2

cos 0 sin

0 1 0 .

sin 0 cos

R

  
   
    

 (4) 

Rotation through the body's z-axis is called the yaw 
angle (ψ). Moreover, the rotation of the yaw angle on the 
z-axis uses the R3 matrix with equation (5). 
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3

cos sin 0

sin cos 0 .

0 0 1

   
    
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R  (5) 

 

From equation (3) to (5), the matrix does multiplica-
tion - to produce a 3 × 3 rotation matrix (R) as in equation 
(6) below. 

cos cos sin sin cos cos sin cos sin cos sin sin

cos sin sin sin sin cos cos cos sin sin sin scos .

sin sin cos cos cos

              
                
       

R     (6) 

Numerical errors stemming from the quantization of 
values caused by sensors and insufficient time resolution 
cause the rotation matrix to lose its properties over time. 
As a result, the rotational transformation performed by 
the rotation matrix is no longer rigid body transformation. 
The rotation matrix has unique properties, which are or-
thogonal and normal. 

 
Fig. 3. Illustration of orthogonal and normalization process 

1.4. Quaternions 

A quaternion concept is a complex number with four 
components: one real part and three imaginary parts. 
Those components are a four-dimensional (4D) number 
system that extends the definition of complex two-
dimensional (2D) numbers. According to [6], the quater-
nions perform a rotation (likewise rotation matrix) in Eu-
clidean space, but they have different rules of operations 
and properties. Therefore, a 4D vector should represent 
quaternions with a length of 1. When creating a number 
system capable of representing rotation in three-
dimensional space, William Hamilton proposed a new 
number system, namely a four-dimensional system; one 
actual number (R) and three imaginary numbers i, j, and 
k, called Quaternions [29 – 31]. Due to the property of 
quaternions, each quaternion unit represents the rotation 
of an object in three dimensions (3D) [24], [32 – 36]. The 
quaternion formula has the following equation (7). 

Or 
1 2 3 4

,

   
   

q q q i q j q k

q w xi yj zk
 (7) 

where q1, q2, q3, q4
  ℝ are real numbers, and i, j, k are 

imaginary numbers that satisfy i2 = j2 = k2 = ijk = –1. Also, 
the real numbers are w, x, y, z or as a 4D vector q = [w, v] 
which is called scalar part and v = (x, y, z) which is called 
vector part. It is assumed that all real numbers are quater-

nions with q2
 = q3

 = q4
 = 0 and all complex numbers are 

quaternions with q3
 = q4

 = 0. It is impossible to represent 
four-dimensional space because perception is only lim-
ited in three-dimensional space, so quaternions cannot be 
illustrated in a Cartesian diagram. The properties of the 
quaternions possess are [37]: 
Rotations: The method of quaternions has proved rota-
tions in 3-dimensional space–the different methods of 
traditional rotations around the axes of the Cartesian co-
ordinates by angles ψ, φ, and θ. However, Euler in the 
general rotation of a rigid object can describe as a single 
rotation about some fixed vector. Given v = [l, m, n] over 
3, then a rotation by an angle θ about v is given by. 

  *,Lq v qvq  (8) 

where  

cos sin sin sin
,   ,   ,   .

2 2 2 2
q l m n

       
 

Computer graphics: The application of quaternions can 
be realistic animation. This technique is called spherical 
linear interpolation (SLERP) and uses all unit quaternions 
to form a unit sphere. By representing the quaternions of 
key frames as points on the unit sphere, a SLERP defines 
the intermediate sequence of rotations as a path along the 
great circle between the two points on the sphere. 
Physics: In physics, the application of quaternions has 
been used in a wide variety of research, such as the mak-
ing work on Special and General Relativity, Newtonian 
Mechanics, scattering experiments (crystallography and 
quantum mechanics).  

The related research applies the quaternion method to 
spacecraft, such as the research of relative navigation, po-
sition, and attitude in a unified form of a spacecraft using 
dual quaternion-based relative with Kalman filter [38 –
 40]. The simulated spacecraft to identify and target aster-
oid is Kleopatra with a dual quaternion relative naviga-
tion filter [41]. In four-dimensional, it proposes the qua-
ternion equations, the spatial inertial navigation systems 
for an azimuthally stabilized and a gyrostabilized keep 
orientation invariant in inertial space [42].  

The advantage of the quaternion that other number 
systems do not have is its ability to represent rotations in 
three-dimensional space. However, the drawback is that 
the quaternion loses its commutative property, 
q1

 q2
  q2

 q1. This property can logically arise if associated 
with a three-dimensional rotation property, producing a 
different output of the order of rotation is also different. 
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1.5. IMU sensor and calibration 

Inertial Measurement Unit (IMU) is an electronic de-
vice that is able to measure and report the direction, angu-
lar velocity, and magnetic field imposed on objects, using 
a combination of several sensors, including an accel-
erometer, gyroscope, and magnetometer. Each sensor 
takes measurements in three axes (x, y, z) in the body 
frame. This three-axis measurement can be used to find 
the orientation of the objects represented in Euler angles, 
rotation matrix, and quaternions [43]. The IMU is part of 
the navigation system known as the Inertial Navigation 
System (INS). The most commonly used representation is 
the Euler angles in the three principal axes; x for roll, y 
for pitch, z for yaw. Pitch is a change in position (e.g., an 
airplane) in the direction of the flight path but causes the 
aircraft to climb or descend. Roll is a change in position 
(e.g., an airplane) in the direction of the flight path but 
causes the rotation of the aircraft body or the aircraft to 
be tilted. Yaw is a change in position (e.g., an airplane) in 
the direction of flight and a change in position with a 
combination of roll or pitch. The IMU does use on air-
craft, Unmanned Aerial Vehicles (UAV), spacecraft, sat-
ellites, etc. The accelerometer is a sensor used to measure 
acceleration, detect and measure vibration, and measure 
the acceleration due to gravity. Gyroscope sensor is to 
measure the angular velocity of an object. In comparison, 
the magnetometer sensor does use to measure the direction 
that comes from the magnet's strength or geomagnetic. The 
advantage of the IMU system is that it calculates continu-
ously from the orientation of an object, known as the Atti-
tude and Heading Reference System (AHRS) [44]. 

IMU sensor calibration is performed with two ap-
proaches; offset calibration [45] for accelerometer and 
gyro and hard-soft iron calibration [46] for the magne-
tometer. Offset calibration is conducted by finding the 
offset value, xo, which is the mean difference between the 
measured value, x̂ , and the value of the sensor should be 
measured, x, expressed by 

1
ˆ

n

o i
x x x


  . 

Hard-soft iron calibration is performed by estimating 

the transformation matrix M and translation, t, where the 

value measured by sensor, p̂ , is transformed to actual 

value p; expressed by    ˆ ˆp p p p   M t M t  

1.6. Orientation measurement 

Naïve measurement 

Naïve measurement is meant to be an orientation 
measurement without control / correction. This measure-
ment involves only two sensors, an accelerometer, and a 
gyroscope. Both sensors measure orientation in Euler, 
ea

 = (a, a), eg
 = (g, g, g), according to their respective 

measurement. ea and eg are then subjected to low pass and 
high pass filters, respectively [47], resulting in a system 
orientation estimation. 

Direct cosine matrix 

The details of the DCM orientation estimation algo-
rithm can be found in the original publication [48, 49]. 
Generally, the DCM consists of 4 stages: (a) Rotation 
matrix update, (b) Ortho-normalization, (c) accelerometer 
and magnetometer drift detection, (d ) drift correction 
with PI-controller. 

Madgwick 

The details of the Madgwick’s orientation estimation 
algorithm can be found in the original publication [50]. 
Generally, the Madgwick’s algorithm consists of 4 stages: 
orientation in quaternion calculation, gradient error from 
accelerometer and magnetometer calculation, gradient de-
scent, integration and normalization to the quaternion. 

1.7. Distance measurement 

This system may include a rotary encoder, a manage-
ment that measures the distance of contour lines and ac-
cumulates it with distance measured from the rotary en-
coder by the robot. The rotary response conversion to the 
distance units is highly dependent on the characteristics 
of the wheels used by the system, such that, 

2
.

   
 

r
s n

c
 (9) 

The measured distance in units is used by r, n is the 
number of pulses measured, c is the number of pulses given 
by the sensor in one revolution, and r is the system's wheel 
radius. [51] expanded the odometry method with PID in or-
der to correct a position and determine position. 

1.8. Terrestrial topocentric  
to euclidean coordinate system transformation  

Terrestrial topocentric systems define a coordinate 
system in the plane tangential to the earth's physical sur-
face, as follows [52]: (a) at least the point of origin is at a 
position near the surface of the earth, (b) the primary of a 
ground contour is the plane related to the earth's surface 
at the point, (c) the elemental axis is from north point, (d ) 
the explain topocentric systems are usually left-handed.  

 
Fig. 4. Geometric illustration for terrestrial topocentric-to-
euclidean coordinate system transformation calculations 
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Consider a point p  3 at the origin (fig. 4). A vector 
v (3) describes the motion from p to p in 3D space. 
Vector v can be projected into two planar planes A and B, 
with the origin at p. Consider plane A, which is represent-
ed by a normal vector ˆAn , placed in 3, such that 

ˆ 0An v  and ˆ ˆ 0A Bn n  , where plane B is parallel to the 
ground and all notations are represented in the world 
frame reference. 

In-plane A coordinate system, vector v can be referred 
to as a2 and ˆ 0An a . Vector v projected into plane B 
can also be referred to as b2 and ˆ 0Bn b . Vector a 
is obtained using pitch measurement, and vector b is ob-
tained using yaw measurement. 

Elevation transformation to Z-Axis 

Consider vector a as a linear change in height over a 
given time interval in the plane A coordinate system. The 
current height is obtained by projecting vector a onto y 

A in 
plane A in 2, and because y is colinear with Z in 3, then. 

1

sin .


  
n

A
n n t t

t

y Z a  (10) 

Where Zn is the current height, | at
 |= | vt

 | = st, is the 
current distance obtained from the rotary encoder, t is 
the pitch value obtained from the orientation estimation 
algorithm, and t indicates a specific time interval. A

ny  can 
be viewed as the Zn axis of the system’s position. 

Azimuth tranformation to XY-axis 

Consider vector b2on plane B, which is the projec-
tion of vector b3. Vector b can be projected onto the x 
and y axes, on the plane B in 2. Since x and y are colin-
ear with the X and Y axes in 3 and it is assumed the lin-
earity of the function when t  0 (as used in Elevation 
Transformation to Z-Axis), then. 

   
1

cos cos ,


   
n

B
n n t t t

t

x X a  (11) 

   
1

sin cos .


   
n

B
n n t t t

t

y Y a  (12) 

Where | at
 |= | vt

 | = st is the current distance obtained 
from the rotary encoder, t and t are the pitch, yaw values 
are obtained from the orientation estimation algorithm, and 
t indicates a specific time interval. We can view B

nx  and 
B
ny  as the Xn and Yn axis of the system’s position. 

1.9. Geodesy and cartography 

Geodesy is a branch of applied mathematics that aims 
to determine the shape and size of the Earth, the 
coordinate position, length, and direction of the Earth's 
surface lines on a particular scale. Along with 
technological advances, geodesy science, which describes 
the position (global navigation satellite system (GNSS) 
by [53]) on the Earth using latitude, longitude, and 
altitude, is called Cartography [54]. Cartography is the 
art, science, and technology of making maps related to 

geography, spatial information, and topography. The 
result of research by [55] represents a city guide tour 
application utilizing the concept of augmented reality in 
the area of geodesy and cartography.  

1.10. Degree of freedom (DOF) 

The degree of freedom (DOF) is a formal description 
of the state parameters of the system concerning the 
degree of independence that states the position in the 
form of coordinates of the system. There are two degrees 
of freedom models: single degrees of freedom (SDOF) 
and multiple degrees of freedom (MDOF). According to 
[56], SDOF is an object movement system that only has 
one coordinate axis to move in one direction. The MDOF 
is a system that has n-degrees of freedom of an object 
[57]. For example, the MDOF case with three rotations 
(x, y, z) provides a displacement moment on the x, y, and 
z directions. 

1.11. Visualization 

Odometry visualization can be viewed as a 3D posi-
tional trajectory. Mathematically, the trajectory T is a set 
of 3D coordinate points such that T = {1,, n} where 
  3 and n represent time step.  

2. Methodology 

2.1. General system description 

The methodology to obtain information on an area in 
making a topographic map by direct observations makes 
the study more accurate. It provides the result in three-
dimensional form, distance, height, and angle by utilizing 
various tools or instruments. 

The visual requirement of the three-dimensional mod-
eling is the input required on the map topography in gen-
eral, shown in fig. 5, which describes the system design 
in detail so that the required data domains, functions, pro-
cesses, or procedures can be determined along with their 
performance and interface. 

The block diagram describes the system as a whole, 
which the system is divided into two parts:  

a) The device, hardware consists of a microcontroller 
and sensor modules such as an Inertial Measure-
ment Unit (IMU) and Rotary Encoder. 

b) Software, using tools the numerical computing to 
proposed methodology is implemented. 

2.2. Proposed methodology 

The objectives can be formulated into the following 
points: 

a) Creating a new instrument that generates non-
linear and continuous plot contour charts to ob-
tain information on an area in making a topo-
graphic map. 

b) Proposing a new method adopting odometry and 
dead reckoning by combining the orientation 
measurement from the inertia sensor and the dis-
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tance measurement from the rotary encoder for 
finding the position in 3D space between the two 
orientation estimation algorithms; DCM and 
Madgwick. 

c) An intensive performance comparison and conclu-
sion between three ground contour estimation algo-
rithms; DCM-3DC (proposed methodology), Madg-
wick-3DC, and Complementary Filter (baseline). 

 
Fig. 5. Overall System Description. 

 
Fig. 6. Proposed methodology 

The proposed methodology, namely DCM-3DC (Di-
rection Cosine Matrix - 3D Coordinate), is described by 
the block diagram in fig. 6. There are four processes 
(blocks), namely: 

a) Orientation Estimation Algorithm processes IMU da-
ta into an orientation using an inertia module sensor. 

b) Distance Measurement processes encoder data into 
a distance using a rotary encoder sensor. 

c) Terrestrial Topocentric-to-Euclidean Coordinate 
System Transformation processes orientation and 
distance range data into a 3D coordinate system. 

d) Odometry visualization is the process of interpret-
ing the 3D trajectory of the system into a Topog-
raphy Map. 

2.3. Proposed methodology stages 

Orientation estimation algorithm 

Direct Cosine Matrix is used as the orientation esti-
mation algorithm in this study. Comparison between two 
popular algorithms (DCM and Madgwick’s) has been in-
tensively conducted in [6]. The results show that DCM 

can estimate orientation more accurately in the situation 
with a lot of noise. 

Ground contour estimation algorithm 

To perform the ground contour estimation algorithm, 
the conditions that must be met are the data availability 
relative to the ground in Euler angles (φ, θ, and ψ) and 
the displacement of the system, ds. 

Algorithm 1 Topocentric to Euclidean Coord. 
 System Transformation 

Input:  
Collection of orientation in each time step in euler angle 
E = {e1,, en} | ei

 = {, , }  SO (3), Collection of dis-

tance changes in each time step s = {ds1,, dsn} | dsn
   

Output: 
Collection of 3D coordinate, 

X = {X1,, Xn} | Xi
 = {x, y, z}  3 

Proses: 

1. x  0, y  0, z  0 
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2. For ei
  E do 

z  equation (10) 
x  equation (11) 
y  equation (12) 

Ground plane estimation algorithm 

Assuming the slope of the ground, which is parallel to 
the X-axis, is a linear plane where t  0, then the plane at 
that specific point can be represented by two points at  
distance from the origin of the coordinates of the system 
(system’s center point) in both X-axes direction. 

Algorithm 2 Ground Plane Estimation around System 
Estimation 

Input: 
Collection of point pairs in both direction of the X-axis of 
the system P = { p1,, pn} | pi

 = {(, 0), (– , 0)},  << 1, 
Collection of 3D coordinates, 

X = {X1,, Xn} | Xi
 = {x, y, z}  3 

Output: 
Collection of point pairs that have been transformed 
according to the orientation of the X-axis of the system 
P = { p1,, pn} | pi = {(, 0), (– , 0)},  << 1 

Proses: 

1. Rxz Extract the rotation of the X-axis and Z-axis 
of the system 

2. For pi, Xi
  P, X do 

pi  Rxz
 × pi

 + Xi (rigid body transformation) 

2.4. Testing and evaluation framework 

Testing with direct observation 

Several locations were selected to perform direct ob-
servation. Three locations were selected, namely;  

a) Simple ramps (at house terrace),  
b) Ramps and junction (indoor area of office at 

Gunadarma University),  
c) Double ramps and turns (outdoor area of office at 

Gunadarma University).  
The locations represent three different difficulty lev-

els, from the least challenging, simple ramps, to the most 
challenging, double ramps and turns (fig. 7, upper rows). 

The three-dimensional trajectory is created based on 
the sketch numerical computing tools (see fig. 7, bottom 
row). The contour lines based on the topography are shown 
in fig. 7 (bottom row) for each observation at three loca-
tions, while the contours of the intervals (for example, ob-
serve the double ramps and turns) are shown in fig. 8. 

Three methods are being compared; 
a) The proposed methodology uses DCM as its orien-

tation estimation, which will then be referred to as 
DCM-3DC (DCM 3D Coordinate), 

b) The comparison method uses Madgwick’s as its ori-
entation estimation, which will then be referred to as 
Madgwick-3DC (Madgwick 3D Coordinate), 

c) The baseline method uses fundamental 3D estima-
tion, Complementary Filter. This third method is the 
primary method used as a reference for comparison 
with other algorithms. 

a)   b)  c)  
Fig. 7. Observation in three different locations. The upper row is the experiment place; the bottom row is the contour lines  

(ground truth) built based on the actual topography 

 
Fig. 8. The contour interval on maps of topography 

Qualitative testing 

Qualitative testing is conducted by measuring the de-
viation of the estimated ground contour with the ground 
truth. The deviation can be viewed as a Euclidean dis-
tance of each measurement sample to the ground truth. 
The exploration of two sample points of the nearest 
neighbor which can estimate the ground truth [58] is per-
formed (see fig. 9).  

Four metrics are used to evaluate the performance of 
the associated algorithm, including: 

Average euclidean distance (AED) 
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Fig. 9. Pair of estimated sample points (blue dot with green 
outline) with the closest point to its ground truth (red dot) 
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Qualitative evaluation 

Qualitative evaluation is conducted by analyzing the 
visualization results of ground contour and topographic 
map. The estimated visualization of the ground contours 
and the topographic map is collocated with the ground 
truth visualization in the same graph. Deviation will be 
shown if the algorithm is not well capable of estimating 
the contour. The measurement of error contains a quanti-
tative analysis that reflects the advantages of the devel-
oped algorithm upon others algorithms using such met-
rics as mean difference, standard deviation, standard er-
ror, and measurement error at some (90 %, 95 %, or 99) 
confidence level. The formula of metrics is used for 
quantitative analysis, namely: 

Mean difference 
The measurement error of distance in the unit of 

measure cm 

tan tan

1
ˆ .

2
  Euclidean Dis ce Euclidean Dis ce

x Average Median  (17) 

The measurement error of distance in the unit of 
measure cm / sampe 
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Confidence level 
The confidence level is equal to (1-alpha)* 100 %. If 

it is assumed that alpha equals to 0.05, it indicates a con-
fidence level of 95 percent and the result of calculating 
the area on the standard normal curve is equal to (1 – al-
pha), or 95 percent is ± 1.96.  

 1.96 . Confidence number of samples  (22) 

A confidence interval (or interval estimate) is an in-
terval of values used to estimate the precise value of a 
population parameter. Therefore, the confidence interval 
is as follows: 

 ˆ 1.96 .x number of samples   (23) 

3. Results analysis and discussion 
3.1. Developed device 

Our research project built a prototype that could gen-
erate continuous and non-linear ground contour plot data 
to create topographic maps in 3D space between the two 
orientation estimation algorithms, DCM and Madgwick. 
fig. 10 is the measurement device that had been built in 
this study. It contains a microcontroller, two sensors (a 
rotary encoder and IMU), and an SD-Card. The reason is 
to make the robot mobile (next it is called unmanned 
ground systems (UGS) to carry out testing and survey on 
simple ground contours such as Simple Ramps, Ramps, 
and Junction and Double Ramps and Turns.  

This research developed an instrument in the UGS as 
a measurement of wheel rotation (as shown in fig. 2) us-
ing an electrical encoder rotating component (fig. 10a) 
packaged in a single pack on the wheel drive, namely a 
DC motor. The rotary encoder sensor is combined with 
an inertia sensor (fig. 10b) to obtain the estimated orien-
tations on 9 DoF from the Accelerometers, Gyroscopes, 
and Magnetometer. 

To optimize the result, when the data are collected 
from the inertia sensor, this sensor is placed in the center 
of the UGS. The results from both sensors are recorded 
on the memory card during the scanning process against a 
surface area.  

3.2. Sensor acquisition and calibration results 

The parameter configured on the accelerometer is a 
known measurement range of ± 2 g, which is in units of 
gravity (g) as in the following equation: 
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21 9.8 .mg s  (24) 

The system will not experience extreme acceleration 
(above 2 g) because of the implications for measurements 
with the highest sensitivity. In contrast, the resolution is 
full-resolution, 10 bits. The two configured parameters 
(measurement range and resolution) will have 
implications for measurement performance, including 
sensitivity and scale. The smaller the measuring range, 
the higher the sensitivity. Furthermore, the ability to 
measure acceleration is accurate, as much as 256 Least 
Significant Bit (LSB) to describe 1 g or as much as 4.3 
mg (milli-gravity) for every LSB. 

a)   

b)  
Fig. 10. The developed ground contour measurement device 

The parameters of the gyroscope are similar to the 
accelerometer; and the configured parameters are 
measuring range and resolution. However, the size of the 
selected measurement range is ± 2000 dps (degrees per 
second), so the system is able to perform measurements 
at an angular velocity up to quite extreme conditions, 
namely 2000 dps. In addition, in contrast to the 
accelerometer measurement with a resolution of 10 bits, 
the resolution of standard configuration gyroscope 
measurements performed have 16 bits. The two 
configured parameters will have implications on 
measurement performance, including sensitivity and scale 
factor. For example, the ability of the system to measure 
angular velocity is relatively accurate, which is an 
average of 14 LSB to describe a change in angular 
velocity of 1 dps, or 69.5 mdps (milli-degree per second) 
for every increase in LSB. 

Fig. 11 is the accelerometer and gyroscope offset cal-
ibration results. The red, green, blue, yellow, cyan, and 
magenta are the X, Y, Z, and calibrated X-Y-Z, axes, re-
spectively.  

On the magnetometer, the parameters that are config-
ured are the measurement range and the resolution as 
well. The chosen measurement range configuration is the 
standard configuration, which is ± 1.3 G (Gauss - unit of 
magnetic field, 1 G = 10 −4 T, which T denotes teslas). 
That value of standard configuration was chosen because 
the average value of the Earth's magnetic field above the 
surface falls within the measurement range, around 0.5 
Gauss and the configuration parameter at the resolution is 
12 bits. The two configured parameters have implications 
on measurement performance, including sensitivity and 
scale factor. For example, the system's ability to measure 
the Earth's magnetic field is relatively accurate, i.e., 1090 
LSB to describe a 1 Gauss or 0.92 mGauss (milli-Gauss) 
change for every LSB increase. 

a)   b)  
Fig. 11. Accelerometer and gyroscopes offset calibration results 

The plot of calibrated collection data to create a 3D 
scatter calibration is performed by rotating the IMU along 

the X-axis, Y-axis, and Z-axis. Magnetometer captures 
magnetic field value in all possible rotation axis [43].   
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a)      b)  
Fig. 12. Magnetometer measurements before (red) and after calibration (green) 

Fig. 12 is a validation of the magnetometer calibration 
results. Before calibration (red), it shows an ellipsoid 
shape, while after calibration (green), it shows a spherical 
shape, which means that other magnetic fields that do not 
originate from the earth have compensated.  

The purpose of the calibrated magnetometer is to be 
able to distinguish the translation results of the two ellip-
soids in the Centroid to Origin Distance line. Before cali-
bration, the distance from the midpoint of the ellipsoid to 
the origin is 0.077 G, and after calibration, the value de-
creases to 0.045 G. It means that the ellipsoid is closer to 
the origin. In addition, the difference in the shape of the 
two ellipsoids can be seen in the Standard Deviation of 
the Distance Points to the Centroid; the standard devia-
tion before calibration is 0.02 G, while the standard devi-
ation after calibration is 0.007 G; The closer to zero the 
standard deviation value is, the more spherical it is. It in-
dicates that the ellipsoid after calibration is more spheri-
cal than before calibration. 

3.3. Orientation estimation results 

The comparison between two popular algorithms has 
been conducted intensively before this study [6], which is 
part of this comprehensive research. It shows that DCM 
could estimate orientation more accurately in a situation 
with lots of noise. 

3.4. Ground plane and contour estimation results 
to making a topographic map 

Data preparation 

Sensor calibration and orientation estimation have 
provided a satisfactory performance; hence the ground 
plane and contour estimation can be conducted. When 
the ground plane with a contour estimation algorithm 
is evaluated, the system gets observational data as data 
collected. 

The observation data acquisition format consists of 11 
fields; time interval (ms), change in the distance (cm), 
three-axis accelerometer measurements, three-axis gyro-

scope measurements, and three-axis magnetometer meas-
urements. For the last nine fields, the IMU sensor data, 
the raw data format (ADC sensor) are used. This method 
is useful toward reducing the process in the microcontrol-
ler, hence increasing system responsiveness. 

1D smooth filter with time window applied to the 9 
DoF IMU data is used to reduce the noise. Filtration is 
proven to be effective in increasing the performance of 
subsequent processes. 

Analysis 

All data are used as the inputs for the ground contour 
estimation algorithm (Algorithm 1) and the ground plane 
estimation algorithm (Algorithm 2); we call it DCM-
3DC. As a comparison, we built another algorithm using 
Madgwick’s and Complementary filter as its orientation 
estimation. 

Tab. 1 shows the metric results of three methods at 
three different locations. quantitatively, DCM-3DC pro-
vides significantly better performance than two others. 
Italways closes to its ground truth, in contrast to the other 
two deviations from its ground truth for all of the perfor-
mance measures used in this study.  

The quantitative measurement results shown in Tab. 2 
provide evidence that the DCM-3D method is excellent. 
Based on the quantitative analysis results (used equations 
from equation 17 until equation 20), experiments of sim-
ple ramps with the DCM-3DC method result in a mean of 
12.82 cm. The mean using the Madgwick-3DC method 
was 33.93 cm; and the Complementary Filter method was 
29.72 cm in the simple ramps experiments. Therefore, the 
two experimental results provide significantly higher 
mean measurement result than the measurement result of 
the DCM-3DC method. It can be concluded that the 
DCM-3DC method is recommended for this experiment. 

The quantitative analysis in the experiment of simple 
ramps by measuring the standard deviation shows that the 
measurements on the Madgwick method are 1.28 cm, and 
the Complementary Filter is 0.58 cm. In contrast to 
DCM-3DC, where the measurement result of the standard 
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deviation is smaller than the two previous methods, the 
standard deviation is 0.06 cm. Accordingly, the standard 

deviation results in the DCM-3DC method are recom-
mended to measure the simple ramps cases.  

Tab. 1. Quantitative Evaluation of three algorithms at three different direct observation locations (the smaller, the better) 

Observation Number of 
Samples 

Distance 
(cm) Method 

Average 
Distance Error 

(cm) 

Median 
Distance Error 

(cm) 

Mean Error 
Growth 

(cm/sample) 

Median Error 
Growth 

(cm/sample) 

Simple Ramps 912 300 

DCM-3DC 1.2861 1.2770 0.0005 0.0002 

Madgwick-3DC 34.834 33.018 0.0028 0.0026 

Comp. Filter 30.126 29.306 0.0024 0.0021 

Ramps and 
Junction 1312 1400 

DCM-3DC 4.9086 4.3029 0.0012 0.0006 

Madgwick-3DC 15.511 8.7419 0.0067 0.0048 

Comp. Filter 7.5670 6.0253 0.0027 0.0031 

Double 
Ramps and 

Turns 
2863 2200 

DCM-3DC 13.3776 14.0543 0.0016 0.0014 

Madgwick-3DC 25.2415 17.1909 0.0076 0.0067 

Comp. Filter 35.8518 33.0592 0.0077 0.0079 
 

The subsequent quantitative analysis measures the 
standard error in the case of the simple ramp against the 
three methods that have been carried out in the previous 
measurement. The standard error measurement results for 
quantitative analysis are shown in table 2, and the DCM-
3DC method gets the minor standard error of 0.05 cm. 

Meanwhile, the results of other standard error measure-
ments show that the standard error is above 0.05 cm; 
namely, the Madgwick method is 0.91 cm, and the Com-
plementary Filter method is 0.41 cm. Furthermore, the 
quantitative analysis recommends that DCM-3DC is a 
better method for the simple ramp. 

Tab. 2. Quantitative analysis of the mean, standard deviation, standard error 

 Method 
Mean Standard Deviation Standard Error Average 

cm cm / sample % cm cm / sample % cm cm / sample % (%) 

Simple 
Ramps 

DCM-3DC 12.82 0.0004 16.76 0.06 0.0002 3.34 0.05 6.38 3.34 7.81 
Madgwick-3DC 33.93 0.0027 44.37 1.28 0.0001 66.59 0.91 16.51 66.59 59.19 

Comp. Filter 29.72 0.0023 38.87 0.58 0.0002 30.07 0.41 14.65 30.07 33.00 
Ramps 

and 
Junction 

DCM-3DC 46.06 0.0009 3.71 0.43 0.0003 0.69 0.30 2.15 0.69 1.70 
Madgwick-3DC 51.47 0.0058 41.49 50.85 0.0010 81.78 35.95 43.71 81.78 68.35 

Comp. Filter 67.96 0.0029 54.79 10.90 0.0002 17.53 7.71 30.13 17.53 29.95 
Double 
Ramps 

and 
Turns 

DCM-3DC 137.16 0.0015 19.77 4.78 0.0001 5.87 3.38 70.27 5.87 10.51 

Madgwick-3DC 212.16 0.0072 30.58 56.93 0.0005 69.88 40.25 85.95 69.88 56.78 

Comp. Filter 344.55 0.0078 49.66 19.75 0.0001 24.24 13.96 165.29 24.24 32.71 
 

The research process for quantitative analysis in the 
ramps and junction case, three measurement results, 
namely the mean, standard deviation, and standard error, 
are shown in tab. 2. The measurement results using 
DCM-3DC show that the mean value is 46.06 cm, which 
is smaller than Madgwick's measurement's mean value 
(51.47  cm) and Complementary Filter's (67.96 cm). In 
the standard deviation measurement in the ramps and 
junction, the DCM-3DC method still got the smallest 
value based on the results of the quantitative analysis. 
The values obtained from the standard deviation meas-
urements are as follows: DCM-3DC is 0.43 cm; Madg-
wick is 50.85 cm; Complementary Filter is 10.90 cm. The 
standard error measurement result representing DCM-
3DC is 0.30 cm. The smallest values based on the results 
of quantitative analysis of Madgwick and Complemen-
tary Filter are 35.95 cm, and are 7.71 cm, respectively. 
Thus, from the result of the experiment with three meth-
ods, the DCM-3DC produces the smallest value com-
pared to the other two experiments; DCM-3DC is the best 
method for ramps and junctions. 

The experiment at the third location is on double 
ramps and turns, where the quantitative analysis uses the 
DCM-3DC, Madgwick, and Complementary Filter meth-
ods. The three methods have performed a quantitative 
analysis to measure the mean, standard deviation, and 
standard error. The mean to quantitative analysis meas-
urement results for double ramps and turns in the DCM-
3DC, Madgwick and Complementary Filter methods are 
137.16 cm 212.16 cm, and 344.55 cm, respectively. The 
smallest mean value was obtained using the DCM-3DC 
method. The quantitative analysis to obtain the standard 
deviation results in that the DCM-3DC method is 
4.78 cm; Madgwick is 56.93 cm; the Complementary Fil-
ter is 19.75 cm. While the results of the quantitative anal-
ysis to calculate the standard error obtains that the DCM-
3DC method is 3.38 cm; Madgwick is 40.25 cm; the 
Complementary Filter is 13.96 cm. Therefore, in the 
quantitative analysis process for testing the case of dou-
ble ramps and turns, the mean calculation, standard de-
viation, and standard error of each measurement provides 
the smallest value by using the DCM-3DC method com-
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pared to the Madgwick method and Complementary Fil-
ter method. Accordingly, the DCM-3DC can be recom-
mended as the best method for double ramps and turns. 

The average results by equation (21) in percentage 
unit’s show that the average value of DCM-3DC is the 

lowest; and it is better algorithm than that of the others. 
The average value of error of DCM-3DC at the simple 
ramps location is 7.81 %, while at the ramps and junction 
location, the average of error is 1.70 %, and at the double 
ramps and turns location the average of error is 10.51 %.

Tab. 3. Quantitative analysis of the observational / measurement error 

Observation 
Number of 
Samples 

Confidence lev-
el (%) 

Observational / Measurement error (cm) 

DCM-3DC Madgwick-3DC 
Complementary 

Filter 

Simple Ramps 912 
90 0.004 0.070 0.032 
95 0.004 0.083 0.038 
99 0.005 0.110 0.050 

Ramps and 
Junction 

1312 
90 0.019 2.311 0.495 
95 0.023 2.754 0.590 
99 0.031 3.621 0.776 

Double Ramps and 
Turns 

2863 
90 0.147 1.751 0.607 
95 0.175 2.086 0.724 
99 0.231 2.742 0.951 

 

The confidence level is the probability where the con-
fidence interval formed. It contains the population pa-
rameters if a repeated estimation process is carried out. In 
Table 3, the measurement results in the quantitative anal-
ysis of the confidence level using three measurement val-
ues of error, namely 90 % (the alpha of 90 % is 0.1), 95 % 
(the alpha of 95 % is 0.05), and 99 % (the alpha of 99 % is 
0.01). Therefore, the equation (22) for measuring the con-
fidence level of each method of observation and three al-
gorithms needs data from each standard deviation in 
tab. 2. However, from three options, the confidence level 
used in our research is 95 % because it can provide a bal-
ance between precision and reliability. 

Tabl. 3 shows the measurement of confidence level 
with DCM-3DC algorithm has a 0.004 cm in the experi-
ment in case simple ramps. However, the confidence lev-
el with the Madgwick-3DC algorithm is 0.083 cm, and 
the filter complementarity algorithm is 0.038 cm. In the 
experiment in the cases of ramps and junctions, the result 
of the confidence level of the DCM-3DC is 0.023 cm, 
Madgwick-3DC is 2.754 cm, and the complementary fil-
ter is 0.590 cm. For the experiment in the cases of double 
ramps and turns, the result of the confidence level of the 
DCM-3DC is 0.175 cm, Madgwick-3DC is 2.086 cm, and 
the complementary filter is 0.724 cm.  

Equation (23) is a measure of the confidence interval 
in our research to provide an estimate of the interval of 
values used to estimate the true value of the error meas-
urement. Based on each mean value in the DCM-3DC al-
gorithm that has been obtained previously (in tabl. 2), the 
results of the 0.95 (95 %) confidence interval estimate 
that the proportion of distance of error for the case of the 
simple ramp is in the range of 33.92 cm < distance of er-
ror < 33.93 cm, for the case of ramps and junctions in the 
interval is 51.44 cm < distance of error < 51.49 cm, and 
for the case of double ramps and turns ramps in the inter-
val is 211.99 cm < distance of error < 212.34 cm. 

Fig.  13 shows the description of the ground plane 
visualized in 3D from each case of land contours at three 

different locations. Location one is called simple ramps, 
location two is called ramps and junction, and location 
three is called double ramps and turns. These images will 
be compared to the test results of the three different algo-
rithms in fig. 15. 

a)  

b)  

c)  
Fig. 13. The ground plane in the case: (a) Simple Ramps, (b) 

Ramps and Junction, and (c) Double Ramps and Turns 

Before showing the results of the three different algo-
rithms, fig. 14. shows the use of the IMU sensor, which 
shows the orientation of the attitude on the UGS that will 
experience roll, pitch, yaw rotation. It is also possible to 
combine rotation simultaneously. Fig. 14. using the 
DCM-3DC method can show the visualization process 
from time to time while the UGS is moving. For example, 
it can be seen from the figure that the process undergoes a 
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roll condition on the x-axis rotation so that the contour 
line seems not really straight. 

Fig. 15a shows the 3D visualization results obtained 
from collecting data from 9 DoF from the IMU that has 
filtered time intervals. The rotary encoder distance range 
data in the direct observation process 1 (simple ramps) 
are a graph of the contour estimation of the plot of land 
using the DCM-3DC, Madgwick-3DC and filters 
complementarity.  

The main feature of orientation estimation from ob-
servations on simple ramps, where the ramp starts from 
+/– 60 cm to +/– 120 cm (see fig. 13a), can be estimated 
well by the system. Moreover, the results of the contour 
estimation of the land plot using the proposed methodol-
ogy (DCM-3DC) have a very satisfactory performance by 
displaying the results on the estimated plot of land (red 
line) that almost resembles the actual plot of land (blue 
line). The qualitative evaluation of performance is in Ta-
ble 1, where DCM-3DC has a mean error of 1.2861 cm 
and a MED of 1.2770 cm. 

Meanwhile, the Madgwick-3DC methodology (ma-
genta line) displays the results of land plots estimated at 
+/–120 cm, experiencing actual plane differences. The 
mean error is 3.4834 cm, and the MED is 3.3018 cm 
(tab. 1). The Complementary Filter methodology (green 
line) displays the results of the land plot, which is esti-
mated to be +/–120 cm experiencing a difference in the 
actual plane so that it has a mean error of 3.0126 cm and 
a MED of 2.9306 cm (tab. 1). 

The data collected consisting of 11 fields: time inter-
vals, distance changes (rotary encoder), 3-axis accel-
erometer, 3-axis gyroscope, 3-axis magnetometer will 
produce a 3D visualization (as seen in fig. 13b) of the 
measurement data on the observation case of ramps and 
junctions. Qualitative test with this level of observation 
difficulty, which is more complicated than the observa-
tion in the previous case, is simple ramps. 

The estimation of the contour of the plot of land using 
the DCM-3DC methodology showed satisfactory perfor-
mance in this observation (ramps and junctions). The 
main features of this observation are two junctions and 
one ramp, which can be estimated well by the system. As 
a result, the estimated plot (red line) nearly resembles the 
actual plot (blue line). 

The summary of the comparison evaluation is shown in 
tab. 1 on the observation of ramps and junctions. It can be 
concluded that the DCM-3DC method provides significantly 
better performance and the results of 3D graphics (see 
fig. 15b) are always closer to ground truth, even though it 
has passed through two junctions and one ramp. DCM-3DC 
has a mean error of 4.9086 cm and MED of 4.3029 cm. 

Madgwick-3DC has a mean error of 15.511 cm and 
MED of 8.7419 cm, so that in fig. 15b, the Madwick-
3DC method (magenta line) shows poor performance af-
ter passing through two junctions. The estimated ground 
contour deviates far from ground truth, especially after 
the second junction. The same result for the Complemen-
tary Filter method is almost identical to the Madgwick-
3DC method, which has a mean error of 7.5670 cm and a 
MED of 6.0253 cm. However, the Complementary Filter 
method (green line) produces a 3D graph of the ground 
contour, estimated to deviate slightly from the ground 
truth (see fig. 15b). 

As in two previous observations, the data visualiza-
tion of the measurement results on observations of double 
ramps and turns (as initially shown in fig. 13c) can repre-
sent visualization by collecting data as many as 11 items 
consisting of: time intervals, distance changes, 3-axis ac-
celerometer, 3-axis gyroscope, and 3-axis magnetometer. 
In addition, qualitative test was carried out to observe 
double ramps and turns, showing the highest level of dif-
ficulty between the two previous observations. Based on 
tab. 1, the DCM-3DC method has a mean error of 
13.3776 cm and MED of 14.0543 cm. 

 
Fig. 14. Illustration of the rotation on roll condition 
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a)  

b)   

c)  
Fig. 15. The ground contour and topographic map result with DCM-3DC, Madgwick-3DC, and Complementary Filter in the case (a) 

simple ramps, (b) ramps and junction, and (a) double ramps and turns 

In estimating the plot contour of land using the DCM-
3DC methodology, it also has a satisfactory performance 
in observing double ramps and turns. In fig. 15c, it can be 
seen from the DCM-3DC trajectory, which is always 
closer to ground truth, even though it has passed three 
turns and two ramps. In the initial conditions, the contour 
estimation of the plot of land showed perfect results, but 
over time and distance, there was a deviation between the 
estimated results of the DCM-3DC (red line) and the ac-
tual plot (blue line). This phenomenon is caused by minor 
errors that accumulate over time. However, the results of 
the DCM-3DC methodology are able to compensate of 
the error very well amidst the challenges of a reasonably 

extensive distance range (+/– 20 meters) with three turns 
at an angle of 90o. 

Representation of fig. 15c, the Madgwick-3DC meth-
od (magenta line) does have a deviation from ground 
truth, but the deviation is much better than the comple-
mentary filter method. On the other hand, the comple-
mentary filter method (green line) gives poor perfor-
mance. The elevation deviation (Z-axis) between the es-
timate and the ground truth looks very clear and unstable 
and it is the deviation of the X Y-axis. The two results of 
these errors can be seen in Table 1, where Madgwick-
3DC has a mean error of 25.2415 cm and MED of 
17.1909 cm. Moreover, the Complementary Filter has a 
mean error of 35.8518 cm and a MED of 33.0592 cm. 



The methodology for obtaining nonlinear and continuous … Musa P., Purwanto I., Christie D.A., Wibowo E. P., Irawan R. 

Компьютерная оптика, 2022, том 46, №2   DOI: 10.18287/2412-6179-CO-915 295 

Conclusions 

 The new methodology described in this paper is de-
signed for unmanned ground systems obtaining spatial 
data from ground contours. The data acquisition process 
utilizes measurement instruments with optical and inertia 
sensors as digital elevation models to represent the topo-
graphic map of one part of the cartographic product. The 
results of the topographic maps in the three-dimensional 
model provide a picture of a surface or contour of the 
land that is easier to understand and easier to adjust to the 
real world's actual situation than the two-dimensional 
shape depicted on the map. The result of three-
dimensional object model has a dense distance and a ten-
uous point distance using a three-dimensional representa-
tion model in contour lines and contour intervals. 

An analysis of three different algorithms at three dif-
ferent locations for ground plane and contour visualiza-
tion was conducted. Qualitatively, a significant deviation 
begins to appear in observation double ramps and turns. It 
can be seen that Madgwick-3DC (magenta line) and 
Complementary Filter (green line) have a pretty signifi-
cant deviation relative to the ground truth. In contrast, 
DCM-3DC (red line) is closer to the ground truth even 
though it has passed two ramps and two turns. The results 
show that DCM-3DC provides much higher performance 
than the other two methods. This performance is seen 
based on standard measurements (metrics) of ground 
truth, including; (a) AED, (b) MED, (c) Mean Error 
Growth, and (d) Median Error Growth. Likewise, for the 
quantitative analysis to measure the mean, standard devi-
ation, standard error, and confidence level, the DCM-
3DC algorithm provides significantly lower error values 
across metrics than the other methods across all metrics 
and all observed locations.  

The sustainability of the 3D visualization results can 
be displayed in more detail, effectively, at zero error rate, 
and complex by utilizing spatial data collection such as 
sea level height, air pressure, base location systems, and 
other instruments. In addition, it needs to integrate with a 
connected system in a global network. 
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