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Abstract  

In this paper we investigate non-Markovian evolution of a two-level system (qubit) in a boson-
ic bath under influence of an external classical fluctuating environment. The interaction with the 
bath has the Lorentzian spectral density, and the fluctuating environment (stochastic field) is repre-
sented by a set of Ornstein-Uhlenbeck processes. Each of the subenvironments of the composite 
environment is able to induce non-Markovian dynamics of the two-level system. By means of the 
numerically exact method of hierarchical equations of motion, we study steady states of the two-
level system, evolution of the reduced density matrix and the equilibrium emission spectra in de-
pendence on the frequency cutoffs and the coupling strengths of the subenvironments. Additional-
ly, we investigate the impact of the rotating wave approximation (RWA) for the interaction with 
the bath on accuracy of the results. 
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Introduction 

Almost every quantum system interacts with its sur-
roundings in a way that makes the system nearly impos-
sible to isolate completely. The interaction gives rise to 
processes of decoherence and appears to be harmful in 
some circumstances, e.g. in quantum information pro-
cessing [1 – 4], and to be a valuable resource in others 
[5 – 7]. In some cases, it is possible to capture evolution 
of the quantum system by means of a master equation of 
Lindblad form [8 – 10]. Systems of that type are called 
Markovian, and their evolution has the form of a quantum 
Markov process. In the Markovian approximation the en-
vironment is assumed memoryless owing to sufficiently 
fast relaxation processes that restore its equilibrium state 
almost instantly. Markovian systems are common in 
quantum optics, where a quantum system is often weakly 
coupled to an environment characterized by negligibly 
small correlation time. 

Systems characterized by memoryful environments 
belong to the much wider category of non-Markovian 
systems [9, 11]. Due to increased experimental and com-
putational capabilities, non-Markovian systems are of 
great interest today. Among them there are such well-
known systems as quantum dots [12 – 15], micromechan-
ical resonators [16, 17], superconducting qubits [18 – 20], 
and many others. Non-Markovian effects are ubiquitous 
in physics, chemistry, and biology and for systems inter-
acting with either bosonic or fermionic reservoirs, like 
photosynthetic systems [21 – 25], molecular aggregates 
[26], molecular magnets [27], and solar cells [28]. Re-
cently non-Markovian environments started to gain atten-
tion in quantum information processing [29 – 31], where 
attempts are made to utilize the backflow of information 
from the environment. 

Accurate description of non-Markovian systems is a 
more complicated problem in comparison with descrip-
tion of Markovian systems. There are a plenty of methods 
known, but none of them are generally applicable, i.e. 
each one has its strong and weak sides, and the number of 
systems it can describe efficiently is often limited. Ana-
lytical methods are represented mostly by perturbative 
expansions for some special parameter regimes, e.g. ef-
fective weak coupling theories or the projection operator 
techniques [32, 33]. Numerically exact methods include 
the ones based on enlarging of the system state space, e.g. 
by extending the system space by the most relevant envi-
ronmental modes [34 – 36], the ones utilizing tensor net-
work approximations in propagation of influence func-
tionals [37 – 39] and in mappings on effective 1D fermi-
onic and bosonic chains [40 – 42], and etc. One of the 
most well-established numerically exact methods is the 
method of hierarchical equations of motion (HEOM) 
[43 – 45]. HEOMs utilize infinite systems of recurrent dif-
ferential equations to encode the memory kernel of sys-
tem-environment interaction and are able to handle a 
great variety of environmental spectral densities. 

Switching from the Markovian approximation to a full 
non-Markovian description reveals many interesting phe-
nomena. The most common one is the emergence of os-
cillations [46 – 50]. Non-Markovianity is known to be 
able to affect steady states (equilibrium states) of a sys-
tem, e.g. it causes non-canonical steady states to appear 
[51], and also it affects the correlation functions. Actual-
ly, if non-Markovianity of a quantum process is suffi-
ciently high, the quantum regression theorem (QRT) 
stops giving reliable correlation functions [52 – 54], 
which leads, for example, to significant differences be-
tween the predicted and the actual emission spectra. It is a 
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common practice to use the rotating wave approximation 
(RWA) for interaction with Markovian environments. Of-
ten the RWA is still used where the evolution is already 
non-Markovian, which can cause problems if non-
Markovianity of the evolution is sufficiently high [11, 55, 
56]. For example, wrongly used RWA may lead to incor-
rect shifts of the system frequencies [57] or may cutoff all 
non-Markovianity [56]. 

When an environment is composite, i.e. consists of 
several subenvironments, it is possible to utilize one of 
the subenvironments to control decoherence of a quantum 
system. The case of a stochastic subenvironment as a 
control tool is rather popular in literature [58 – 63] and 
has similarities with dynamical decoupling schemes that 
alter the environment spectral density via filtering func-
tions realized in sequences of laser impulses [64]. 

In the paper we investigate non-Markovian evolution 
of a two-level system (TSL) in a bosonic bath under 
influence of an additional external fluctuating environ-
ment. The bath spectral density function is chosen to be 
Lorentzian [8, 65, 66]. The Lorentzian spectral density is 
suitable, for example, for interaction between a Jaynes-
Cummings cell and a zero-temperature bosonic bath [67]. 
The stochastic environment is represented by a set of 
Ornstein-Uhlenbeck random processes. Following [68], 
we derive a HEOM capable of handling both RWA and 
non-RWA couplings with the bath equally accurate. As-
suming the bath and the fluctuating environment to be in-
dependent, we analyze steady states of the TLS, evolution 
of the reduced density matrix, and equilibrium emission 
spectra. We investigate the dependence on frequency cut-
offs and coupling strengths of spectral densities of the 
subenvironments in both RWA and non-RWA cases and 
provide a comparison with the ones obtained in the Mar-
kovian approximation [69]. 

The paper is organized as follows. In Sec. 1 we intro-
duce the model, in Sec. 2 we present the hierarchical 
equations of motion. Next, we study the TLS evolution 
numerically. In Sec. 3 we study steady states of the TLS, 
in Sec. 4 we investigate evolution of the reduced density 
matrix, and in Sec. 5 we investigate the emission spectra. 
Finally, we draw conclusions. 

1. Model 

The full Hamiltonian for the system can be written as 

1
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


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where ĤA
 = ħ ω0

 σ̂+
 σ̂– is the Hamiltonian for the free TLS, 

ω0 is the TLS frequency, σ̂+ and σ̂- are the rising and the 
lowering operators of the TLS, respectively; b̂k

+ and b̂k 
form a set of creation and annihilation operators describ-
ing the modes of the bosonic bath; ĤIF is the Hamiltonian 
for the interaction of the TLS with the fluctuating envi-
ronment (stochastic field) and ĤIB describes the interac-
tion between the TLS and the bath. 

The Hamiltonian for interaction with the stochastic 
field is defined by the next expression 
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where Ω (t), ξ (t) are random functions, the overbar means 
complex conjugation. The interaction gives rise to two 
decoherence channels, a dephasing channel and a relaxa-
tion channel, originating from the first and the second 
terms in (2), respectively. 

The random function Ω (t) is a real random process 
and ξ (t) is a complex random process. We assume that 
Ω (t) and ξ (t) are Markov processes of Ornstein-
Uhlenbeck (OU) type [70], and consider the real and im-
aginary parts of ξ (t) as two independent real OU process-
es ξ1

 (t) and ξ2
 (t), respectively. Correlation functions of 

the random processes have the same form 
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where ν  {Ω, ξ1, ξ2}, ∆ν is the standard deviation of the 
OU process and defines the coupling strength with the 
stochastic field, 1 / γν is the correlation time of the OU 
process and γν has the physical meaning of the cutoff fre-
quency of the environment. 

The Hamiltonian ĤIB is used in two forms, the form 
corresponding to the full electric-dipole interaction (non-
RWA) and the form representing the interaction in the ro-
tating wave approximation (RWA). Introducing a new 
auxiliary TLS operator â, we can combine both forms of 
ĤIB in one expression 

1
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where gk are the TLS-bath coupling constants, â+ is the 
adjoint of â. If â = σ̂+ + σ̂–, (4) describes the full interac-
tion, for â = σ̂- it corresponds to the RWA interaction. 

For path integral methods it is more naturally to 
define interaction with environment in the continuous 
form via the spectral density function, instead of utilizing 
the coupling constants gk directly. In the paper we con-
sider the Lorentzian spectral density [8, 65 – 67] 
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where ∆B defines the coupling strength, γB is the bath 
spectral width, also called the environment cutoff fre-
quency. For the noise induced by the bath, 1 / γB repre-
sents the correlation time. The parameters have close re-
lation to the corespondent parameters of the stochastic 
field ∆ν and γν (3) and generally have the same physical 
meaning in terms of impact on the TLS dynamics. 

2. Hierarchical equations of motion 

Let us suppose that before the initial moment of time the 
TLS does not interact with the bath and the stochastic field 
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and both of the subenvironments are at equilibrium. Then 
the total density matrix at t = t0 has the factorized form 

( ) ( )
0 1 2 0 0ˆ ˆ ˆ( , , , ) ( , , ) ( ) ( )A B

tot eq eqt P t t          , (6) 

where Peq
 (Ω, ξ1, ξ2) is the factorizable Gaussian equilib-

rium distribution function of the stochastic field, ρ̂(A) (t0) 
denotes the initial density matrix of the TLS, and ρ̂(B)

eq(t0) 
is the equilibrium bath density matrix at zero temperature. 

For the factorized initial conditions (6) and the Lo-
rentzian spectral density (5), we can obtain the HEOM by 
the steps presented in [68], where we replace the high-
temperature Drude spectral density with the Lorentzian 
spectral density and take the limit β → ∞ for the bath sub-
environment. The HEOM expression has the same form 
and can be written as 
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where m combines the field and the bath indexes into one 
composite index. We assume that the first three components 
of m index the recursion relations for the stochastic field in 
the order {Ω, ξ1, ξ2}. The last two components index the bath 
recursion relations. The special notation m|k+1 is used for the 
index m with the k-th component increased by 1 
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ρ̂(A)
m(t) denotes the m-th auxiliary density matrix, Ĥx

A is 
the commutator superoperator for the free TLS, 
Ĥx

Aρ̂ = ĤAρ̂ – ρ̂ĤA. The actual TLS density matrix starts 
the recursion and has index m = 0, ρ̂(A)(t) = ρ̂(A)

0(t). The 
constants α(F)

k and the operators Φƹ (0)
F,k and Φƹ (1)

F,k belong 
to the stochastic field part of the recursion relations and 
can be expressed via parameters of the stochastic field 
and the field coupling operators 
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where νk denotes the k-th element in {Ω, ξ1, ξ2}, 
e.g. ν1

 = Ω, V̂x
F,νk are commutator superoperators, i.e. 

V̂x
F,νk ρ̂ = V̂F,νk ρ̂ – ρ̂V̂F,νk, the corresponding operators on 

the TLS subspace 
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The remaining coefficients α(B)
k, Φƹ (0)

F,k and Φƹ (1)
F,k define 

the bath part of the recurrence relations and depend on the 
bath spectral density. If the spectral density is Lorentzian (5), 
we have the next expressions for the coefficients 
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where ĉ1
 = â and ĉ2

 = â+, the superscript “⨉” denotes the 
commutator superoperator defined earlier, and the super-
script “R” denotes the superoperator for action from the 
right, i.e. ĉR

2
 ρ̂ = ρ̂ĉ2. 

From (11) it follows that the bath part of the HEOM 
cannot be transformed into the one-indexed form, in con-
trast with the stochastic field part [44] and the case of 
non-RWA interaction with the high-temperature Drude 
bath [68], because there are two unequal constants α(B)

k1 
and α(B)

k2. While the infinite-temperature Drude bath ap-
pears to be quite similar to the stochastic field in terms of 
the TLS dynamics [43], we expect that the zero-
temperature Lorentzian bath and the stochastic field act 
on the TLS in qualitatively different ways. 

The HEOM (7) is an infinite system of ordinary dif-
ferential equations for elements of the main (m = 0) and 
the auxiliary (m ≠ 0) density matrices over the TLS state 
space. The auxiliary density matrices improve accuracy 
and should be cut at some m, where the accuracy goal is 
satisfied. It is possible to truncate the recurrence relations 
in such a way that the zero-order approximation will co-
incide with the quantum master equation for relevant pa-
rameter regimes [43]. In practice a simpler way is usually 
sufficient, where all further auxiliary density matrices are 
considered zeros. The truncated system of ODEs can be 
solved by any numerical method for stiff systems of 
ODEs. In our case the best performance was achieved 
with explicit Runge-Kutta methods.   

3. Steady states 

The steady states of the TLS reachable from the selected 
initial state (6) can be obtained by propagating the state for-
ward in time until the reduced density matrix stops chang-
ing. Typical response of the steady states on changes of the 
environment parameters is presented in fig. 1.  

For a wide range of frequency cutoffs and coupling 
strengths tested, the stochastic field acting alone brings 
the TLS to the steady state where both the excited and the 
ground states are equally possible. Qualitatively different 
picture is observed for the TLS in the Lorentzian bath. 
Here, if one of the approximations is used, either the 
RWA or the Markovian, the TLS equilibrates in its 
ground state. Otherwise, in case of the non-RWA interac-
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tion with the bath, the probability of the excited state is 
above zero and gradually rises with the frequency cutoff, 
starting near zero and then approaching 1 / 2 from below 
(fig. 1a). Also in the non-RWA case the stationary state 
exhibits a weak dependence on the coupling strength, the 

excited state probability rises from zero to 1 / 2 from be-
low, but much slower, then it is in the frequency cut-off 
case. Thus, the RWA, same as the Markovian approxima-
tion that intrinsically utilizes the RWA, alters the station-
ary states behavior drastically. 

(a)    (b)    (c)  

(d)    (e)  
Fig. 1. (a) The excited state population of the TLS in a steady state for interaction with the Lorentzian bath only (the field is off) as a 
function of the bath frequency cutoff γB

 , ∆B
 /ω0

1/2 = 0.4. Solid curve denotes the non-RWA coupling with the bath. The RWA and the 
Markovian approximation curves coincide with the horizontal axis. (b, c) The excited state population of the TLS in a steady state for 

simultaneous interaction with the stochastic field and the Lorentzian bath as a function of (b) the bath frequency cutoff γB
 , 

∆B
 /ω0

1/2 = 0.4, and (c) the bath coupling strength ∆B
 , γB

 /ω0
 = 0.8. The dashed and the solid black curves denote the RWA and the 

non-RWA couplings, respectively, the gray curve stands for the Markovian approximation. The stochastic field is characterized by 
γν /ω0

 = 0.2 and ∆ν /ω0
1/2 = 0.4. (d, e) The excited state population of the TLS in a steady state for simultaneous interaction with the 

stochastic field and the Lorentzian bath as a function of (d) the field frequency cutoff γν = γF
 , ∆ν /ω0

1/2 = 0.4, and (e) the field coupling 
strength ∆ν = ∆F, γν /ω0

 = 0.2. The dashed and the solid black curves denote the RWA and the non-RWA couplings, respectively, the 
gray curve stands for the Markovian approximation. The bath is characterized by γB

 /ω0
 = 0.8, ∆B

 /ω0
1/2 = 0.4

When the TLS interacts with both subenvironments 
(fig. 1b – e), the difference between the stationary states 
for each of the subenvironments becomes visible. Be-
cause the difference may be big, e.g. for low bath fre-
quency cutoffs in the non-RWA case or for any parame-
ters in the RWA case, the impact of the stochastic field 
can be significant. 

If we fix parameters of the stochastic field and start 
increasing the bath frequency cutoff γB (fig. 1b) or the 
coupling strength with the bath ∆B (fig. 1c) starting from 
zero, the bath contribution in a steady state grows and the 
excited state population in the steady state decreases, be-
cause the steady states for decoherence in the bath always 
lie lower. Because in the RWA case the steady states are 
all completely unexcited (fig. 1a), the RWA curve is al-
ways below the non-RWA one. The distance between 
them constantly increases as the non-RWA steady state 
for decoherence in the bath shifts up with both the bath 
frequency cutoff γB and the bath coupling strength ∆B. 
The RWA curves exhibit saturation in both figures, but 
the non-RWA curves reach minimums, go up and ap-
proach the Markovian curves from below (more pro-
nounced in fig. 1b). In the Markovian approximation the 
steady states seem insensitive to any changes of the bath 
spectral density parameters.  

Now let us fix the bath parameters and change the 
stochastic field instead. If we begin to gradually increase 
the stochastic field frequency cutoff from zero changing 
all the random processes simultaneously γν = γF (fig. 1e), 
the field contribution in the resulting steady state starts 
growing and the steady excited state population of the 
TLS starts growing either, because the steady states for 
decoherence in the stochastic field always lie higher. At 
some value of γF we reach the maximum, and after it the 
excited state population starts decreasing. The RWA ap-
plied to the interaction with the bath shifts the steady 
state down with respect to the one of the non-RWA 
curve, while the Markovian approximation gives much 
higher steady excited states populations for small frequency 
cutoffs and significantly overestimates the rate at which they 
decrease. The situation is similar if we change the field cou-
pling strength in the same way ∆ν = ∆F (fig. 1d), but there is 
no maximum, and the curves continues to rise, approaching 
the Markovian curve from below. 

The observed behavior can be explained via the mag-
nitude of the environment spectral density (for the sto-
chastic field it is the spectrum of corresponding random 
processes) in the vicinity of the TLS resonant frequency. 
The OU random processes and the Lorentzian bath have 
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spectral densities with one peak. The OU process peak is 
located at ω = 0 and becomes wider and lower when the 
correspondent frequency cutoff increases. In fig. 1d we 
see how the stochastic field contribution in the steady 
states grows at first, causing the rise of the steady states 
curves, because the spectral density peak widens and the 
magnitude of the spectral density near the resonant fre-
quency increases, then the contribution falls, because the 
process of the spectral density peak declining becomes 
dominating, and the curves go down too. The switch from 
the growth to the decline of the field spectral density near 
the resonance frequency determines the maximum of the 
RWA and the non-RWA curves. 

In contrast, the peak of the bath spectral density is al-
ways located at resonance and widens when the bath fre-
quency cutoff increases. In fig. 1b we see how the widen-
ing increases the magnitude of the bath spectral density in 
the vicinity of ω0 and the contribution of the bath in the 
steady states start growing, causing the curves to go 
down, because the TLS steady states for interaction only 
with the bath are located lower. Then the magnitude 
reaches its maximum and the contribution saturates. The 
subsequent rise of the non-RWA curves can be explained 
by the rise of the non-RWA curve for decoherence in the 
bath only (fig. 1a). 

Coupling strengths of both subenvironments affect 
only heights of the corresponding spectral density peaks, 
when a coupling strength grows, the peak grows either. It 
results in gradual increase of the magnitude of a spectral 
density near the TLS resonant frequency and can be seen 
in fig. 1c, e. In fig. 1c the bath contribution increases, 
shifting the curves down, while in fig. 1e the field contri-
bution increases, shifting the curves up. The situation be-
comes more complex if we stop using the restrictions 
γν = γF with ∆ν

 = ∆F and allow arbitrary changes for each 
of the underlying random processes of the stochastic 
field. The detailed study of impact of each of the process-
es on the steady states will be presented elsewhere. 

4. Density matrix evolution 

An initially excited TLS placed in an equilibrium 
non-Markovian environment loses coherence due to the 
interaction with the environment, but the process is not 
monotone. At some point during the evolution the infor-
mation backflow from the environment begins restoring 
the coherence, then the backflow weakens and the TLS 
starts losing coherence again. As a result, the oscillatory 
behavior emerges. 

The evolution of the reduced density matrix from the 
factorized initial state (6) for different parameter regimes 
is presented in figs. 2, 3. The curves corresponding to the 
non-Markovian evolution, both for the RWA and the 
non-RWA types of coupling with the bath, exhibit rapidly 
vanishing oscillations, which are more evident for the 
RWA curves and for all the non-Markovian curves corre-
sponding to decoherence in the stochastic field (fig. 2).  

(a)  

(b)  
Fig. 2. Evolution of the TLS excited state population in the 

stochastic field in dependence on (a) the field frequency cutoff 
γF and (b) the field coupling strength ∆F. Black denotes the non-
Markovian curves, gray stands for the Markovian ones. In (a) 
γν /ω0

 = γF
 /ω0

 = {0.2, 0.4, 0.8} and ∆ν /ω0
1/2 = ∆F

 /ω0
1/2 = 1.6, for 

{dotted,  dashed,  solid} curves respectively, and in (b) 
γν /ω0

 = γF
 /ω0

 = 0.4, ∆ν /ω0
1/2 = ∆F

 /ω0
1/2 = {0.4, 0.8, 1.6} 

The amplitude of the oscillations has a clear relation 
to the shapes of spectral densities of the subenvironments 
in the vicinity of the TLS resonance frequency ω0. If the 
environment spectral density is flat in the vicinity of ω0, 
which is the case of large frequency cutoffs, there are no 
oscillations. For example, the Markovian approximation 
curves in figs. 2a, 3a exhibit no oscillations, because the 
Markovian approximation assumes that environment cor-
relation times are small, which corresponds to large fre-
quency cutoffs. If the environment spectral density is not 
flat in the vicinity of the TLS resonance, the oscillations 
appear. The dependence of the oscillations amplitude on 
the frequency cutoff value in figs. 2a, 3a is more evident 
in case of decoherence in the bath, because the peak of its 
spectral density is located at the TLS resonance frequen-
cy. The coupling strength of the environment impacts the 
amplitude of the oscillations in the opposite way 
(figs. 2b, 3b).  

The evolution becomes faster if the coupling strength 
increases, i.e. the minimums are located closer and the 
steady states are reached earlier (fig. 2b, 3). The frequen-
cy cutoff impacts the speed of the evolution in a more 
complex way, there is a cutoff frequency for which the 
evolution speed is maximum (not shown).  

The main difference between the RWA and the non-
RWA curves in fig. 3 resides in values of the minimums. 
The RWA curves have its minimums placed at the hori-
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zontal axis where also the stationary values are located, 
while the minimums of all the non-RWA curves are 
placed strictly above the corresponding stationary values. 
The stochastic field curves for sufficiently large couplings 
have their first minimum located below the stationary 
value (fig. 2), which resembles the behavior of the non-
RWA curves for decoherence in the bath. In overall, the 
non-RWA evolution of the reduced density matrix re-
minds the smoothed version of the RWA evolution. 
When the TLS interacts with both subenvironments sim-
ultaneously (fig. 4), the evolution becomes faster due to 
the presence of an additional decoherence channel, the 
first minimum is moved to the left and the stationary val-
ue is reached earlier. Because the steady state is shifted 
up by the stochastic field, the curves lie above the corre-
sponding curves for decoherence in the bath only. Also 
the stochastic field significantly damps the oscillations, 
which is evident even for rather weak coupling strengths 
with the field in comparison with the coupling strength 
with the bath. The Markovian approximation shows the 
fastest decoherence among all the curves. 

(a)  

(b)  
Fig. 3. Evolution of the TLS excited state population in the 

Lorentzian bath (the stochastic field is off) in dependence on (a) 
the bath frequency cutoff γB and (b) the bath coupling strength 
∆B. The thin and the thick black curves (any stroke style) denote 

the RWA and the non-RWA couplings, respectively, the gray 
curves stand for the Markovian approximation.  

In (a) γB
 /ω0

 = {0.2, 0.4, 0.8}, ∆B
 /ω0

1/2 = 1.6,  
for {dotted, dashed, solid} curves respectively,  

and in (b) γB
 /ω0

 = 0.4ω0, ∆B
 /ω0

1/2 = {0.4, 0.8, 1.6} 

5. Emission spectrum 

We obtain the equilibrium emission spectra of the 
TLS by applying the Fourier transform to the two-time 
correlation function 〈σ̂+

 (t2) σ̂–
 (t1)〉, where t2

 > t1. The time 

t1 is selected sufficiently big for the reduced density ma-
trix evolution to reach its stationary phase, thereby the 
correlation function may be considered stationary. We 
calculate the stationary correlation function in the follow-
ing way. First we propagate the initial state to the steady 
state, then apply the operator σ̂– to all density matrices 
ρ̂(A)

m
 (t1), lying in the TLS subspace, next the result is 

propagated to t2, where σ̂+ is applied.  

 
Fig. 4. Evolution of the TLS excited state population for 
simultaneous interaction with the stochastic field and the 

Lorentzian bath (solid curves) in comparison with the case of 
interaction with the bath only (dashed curves). The thin and the 

thick black curves (any stroke style) denote the RWA and the 
non-RWA couplings, respectively, the gray curves stand for the 

Markovian approximation, γν /ω0
 = γF

 /ω0
 = 0.4, 

∆ν /ω0
1/2 = ∆F

 /ω0
1/2 = 0.4, and γB

 /ω0
 = 0.4 

The equilibrium emission spectra for interaction with 
the Lorentzian bath can be obtained only in the case of 
the non-RWA coupling, because the steady states in the 
Markovian and the RWA approximations are completely 
unexcited and do not emit (fig. 5). If the frequency cutoff 
is large, the non-RWA emission spectrum has one peak, 
which shifts to the right when the cutoff becomes smaller 
(not shown). At some cutoff value the top of the peak be-
comes a plateau and splits in two practically non-
distinguishable peaks of non-equal intensity which are 
placed symmetrically with respect to ω = ω0 (not shown). 
Then the peaks move in the opposite directions, slightly 
declining, but stop at some value of the cutoff and start 
moving backwards while becoming more and more dis-
tinct (fig. 5a). At the same time the overall intensity of 
the spectrum gradually decreases. As a result, the two-
peaked spectra are fairly weak in comparison with the 
one-peaked spectra. In fig. 5 we use the normalization by 
the maximum value, so the actual spectrum intensity is 
not shown. Potentially the appearance of the two peaks is 
explained by the presence of the two complex-conjugated 
coefficients α(B)

k1 and α(B)
k2 in (11) instead of one, e.g. for 

decoherence in the stochastic field. Also there is a zero-
intensity point for ω = − ω0 and two peaks on both sides 
of it. The peaks move towards each other when the fre-
quency cutoff decreases. 

The dependence on the coupling strength with the 
bath is slightly more simple. If we increase it, the main 
peak widens and moves to the right, then splits in two 
peaks of unequal intensity (fig. 5b). If we increase the 
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coupling strength further, the right peak, which is the 
main peak, decreases, and the left (the side peak) grows, 
while moving in the opposite directions, the peaks resolu-
tion becomes better. For large coupling strengths the side 
peak becomes the dominant and approaches ω = 0.  

(a)  

(b)  
Fig. 5. Emission spectra of the TLS in the Lorentzian bath, 

normalized by maximum values, in dependence on (a) the bath 
frequency cutoff γB and (b) the bath coupling strength ∆B.  

In (a) γB
 /ω0

 = {0.1, 0.2, 0.4}, ∆B
 /ω0

1/2 = 0.6,  
for {dotted, dashed, solid} curves respectively,  

and in (b) γB
 /ω0

 = 0.2, ∆B
 /ω0

1/2 = {0.3, 0.6, 1.2} 

For comparison, we show the equilibrium emission 
spectra for decoherence in the stochastic field in fig. 6. 
The spectrum differs qualitatively from the case of deco-
herence in the Lorentzian bath. The stochastic environ-
ment spectral density has a peak located at ω = 0 for any 
value of the frequency cutoff and the coupling strength. 
The peak becomes more distinct if the frequency cutoff 
lowers or the coupling strength rises. The resonance is 
clearly visible in fig. 6, where a side peak located at ω = 0 
appears if the cutoff frequency is sufficiently small or the 
coupling strength is sufficiently large. At the same time, 
the main peak shifts to the right and widens. The spectrum 
energy redistributes from the main peak to the side peak, 
and the side peak grows while the main peak decreases.  

The Markovian approximation effectively considers 
the environmental spectral density flat (large frequency 
cutoffs), or, equivalently, it considers only a small region 
of the spectral density in the vicinity of the TLS reso-
nance. If the spectral density resonance is located suffi-
ciently far from the TLS resonance, the Markovian ap-
proximation loses the essential information about the 
peak existence. In fig. 6 it results in wide one-peaked 

spectra, which peaks are located in the vicinity of the 
TLS resonance frequency. 

(a)  

(b)  
Fig. 6. Emission spectra of the TLS in the stochastic field, 

normalized by maximum values, in dependence on (a) the field 
frequency cutoff γF and (b) the field coupling strength ∆F.  

Black denotes the non-Markovian curves, gray stands  
for the Markovian ones. In (a) γF

 /ω0
 = {0.1, 0.2, 0.4}, 

∆F
 /ω0

1/2 = 0.6, for {dotted, dashed, solid} curves respectively,  
and in (b) γF

 /ω0
 = 0.2, ∆F

 /ω0
1/2 = {0.4, 0.6, 0.8} 

In fig. 7 we show the impact of the stochastic field on 
the equilibrium emission spectra for decoherence in the 
bath. The stochastic field causes the emergence of the ze-
ro-frequency peak, like it does in fig. 6, so the spectrum 
obtains the three-peaked form. Also it lowers the left 
peak of the doublet (the side peak in fig. 5), widens it and 
shifts the main peak (the rightmost peak) to the right. The 
field smoothes the negative frequencies spectrum, making 
the zero point disappear, and increases intensity of the 
RWA curve so that it can be observed. The Markovian 
approximation is clearly inaccurate in the parameter re-
gions selected. 

Conclusion 

We have studied non-Markovian evolution of a TLS in a 
composite environment consisting of two subenvironments, 
a zero-temperature bosonic bath characterized by the Lo-
rentzian spectral density and a stochastic field of the 
Ornstein-Uhlenbeck type, and analyzed the impact of the ro-
tating-wave approximation for the interaction with the bath. 

It was shown that the steady states for decoherence in 
the bath depend on the TLS-bath coupling type: the full 
interaction leads to different steady states in comparison 
with the cases when either the RWA or the Markovian 
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approximation is used. We investigated the joint influence 
of the subenvironments on the steady states and found 
connections with the shape of the environment spectral 
density in the vicinity of the TLS resonant frequency. 

 
Fig. 7. Emission spectra of a TLS for simultaneous interaction 
with the stochastic field and the Lorentzian bath (solid curves) 
in comparison with the case of interaction with the bath only 

(dashed curves), normalized by maximum values. The thin and 
the thick black curves (any stroke style) denote the RWA and the 
non-RWA couplings, respectively, the gray curves stand for the 

Markovian approximation. γν /ω0
 = γF/ω0

 = 0.2, 
∆ν /ω0

1/2 = ∆F
 /ω0

1/2 = 0.2, and γB
 /ω0

 = 0.2, ∆B
 /ω0

1/2 = 0.6 

We demonstrated how the reduced density matrix 
evolution depends on the frequency cutoff and the cou-
pling strength of the environment. In all cases, except the 
Markovian approximation ones, the reduced density ma-
trix exhibits the oscillatory behavior, the amplitude of 
which can be explained via shapes of spectral densities of 
the subenvironments in the vicinity of the TLS resonance 
frequency. We showed that an increase of the frequency 
cutoff smooths the oscillations and shifts the first mini-
mum to the right while an increase of the coupling 
strength acts in the opposite way. Comparing the cases of 
the full and the RWA couplings to the bath, we found that 
minimums of the oscillations in the RWA can be located 
below the stationary value in contrast to the full interac-
tion case where this is not observed. 

We investigated the dependece of the TLS equilibri-
um emission spectra on the frequency cutoffs and the 
coupling strengths of the subenvironments and found that 
the spectra can have the doublet form in the positive fre-
quencies domain and the doublet form in the negative 
frequencies domain at the same time, if the TLS interacts 
with the bath only, but the intensity of the spectrum is 
relatively low. For interaction with both subenviron-
ments, the spectrum can have three distinct peaks, one of 
which is located at the zero frequency, and the other two 
are located at the opposite sides of the TLS resonance. 

References 

[1] Koch CP. Controlling open quantum systems: tools, 
achievements, and limitations. J Phys Condens Matter 
2016; 28(21): 213001. DOI: 10.1088/0953-
8984/28/21/213001. 

[2] Khurana D, Agarwalla BK, Mahesh TS. Experimental 
emulation of quantum non-Markovian dynamics and co-

herence protection in the presence of information 
backflow. Phys Rev A 2019; 99: 022107. DOI: 
10.1103/PhysRevA.99.022107. 

[3] D’Arrigo A, Falci G, Paladino E. Quantum zeno and anti-
zeno effect on a two-qubit gate by dynamical decoupling. 
Eur Phys J Spec Top 2019; 227(15): 2189-2194. DOI: 
10.1140/epjst/ e2018-800081-0. 

[4] Jing J, Wu L-A. Decoherence and control of a qubit in spin 
baths: an exact master equation study. Sci Rep 2018; 8(1): 
1471. DOI: 10.1038/s41598-018-19977-9. 

[5] Ban M. Decoherence of a two-qubit system interacting with 
initially correlated random telegraph noises. Quantum Inf Pro-
cess 2020; 19(2): 46. DOI: 10.1007/s11128-019-2539-4. 

[6] Moreira S, Marques B, Paiva R, Cruz L, Soares-Pinto D, 
Semião F. Enhancing quantum transport efficiency by tun-
ing non-Markovian dephasing. Phys Rev A 2020; 101(1): 
012123. DOI: 10.1103/PhysRevA.101.012123. 

[7] Maier C, Brydges T, Jurcevic P, Trautmann N, Hempel C, 
Lanyon B, Hauke P, Blatt R, Roos C. Environment-
assisted quantum transport in a 10-qubit network. Phys 
Rev Lett 2019; 122(5): 050501. DOI: 
10.1103/PhysRevLett.122.050501. 

[8] Breuer H-P, Petruccione F, et al. The theory of open quan-
tum systems. Oxford: Oxford University Press; 2002. 

[9] Rivas A, Huelga SF, Plenio MB. Quantum non-
markovianity: characterization, quantification and detec-
tion. Rep Progr Phys 2014; 77(9): 094001. DOI: 
10.1088/0034-4885/77/9/094001. 

[10] Lindblad G. On the generators of quantum dynamical 
semigroups. Commun Math Phys 1976; 48(2): 119-130. 
DOI: 10.1007/ BF01608499. 

[11] de Vega I, Alonso D. Dynamics of non-Markovian open 
quantum systems. Rev Mod Phys 2017; 89: 015001. DOI: 
10.1103/RevModPhys.89.015001. 

[12] Wu J, Chen S, Seeds A, Liu H. Quantum dot optoelectron-
ic devices: lasers, photodetectors and solar cells. J Phys D 
Appl Phys 2015; 48(36): 363001. DOI: 10.1088/0022-
3727/48/36/363001. 

[13] Meden V. The Anderson–Josephson quantum dot—a theo-
ry perspective. J Phys Cond Matter 2019; 31(16): 163001. 
DOI: 10. 1088/1361-648x/aafd6a. 

[14] Tahara H, Ogawa Y, Minami F, Akahane K, Sasaki M. Long-
time correlation in non-Markovian dephasing of an exciton-
phonon system in inas quantum dots. Phys Rev Lett 2014; 
112: 147404. DOI: 10.1103/PhysRevLett.112.147404. 

[15] Bera D, Qian L, Tseng T-K, Holloway P. Quantum dots 
and their multimodal applications: A review. Materials 
2010; 3(4): 2260-2345. DOI: 10.3390/ma3042260. 

[16] Aspelmeyer M, Kippenberg T, Marquardt F. Cavity opto-
mechanics. Rev Mod Phys 2014; 86(4): 1391-1452. DOI: 
10.1103/ RevModPhys.86.1391. 

[17] Gröblacher S, Trubarov A, Prigge N, Cole GD, Aspelmey-
er M, Eisert J. Observation of non-Markovian microme-
chanical brownian motion. Nat Commun 2015; 6(1): 7606. 
DOI: 10.1038/ncomms8606. 

[18] Andersson G, Suri B, Guo L, Aref T, Delsing P. Non-
exponential decay of a giant artificial atom. Nature Phys 
2019; 15(11): 1123-1127. DOI: 10.1038/s41567-019-0605-6. 

[19] Potočnik A, Bargerbos A, Schröder FAYN, Khan SA, Collo-
do MC, Gasparinetti S, Salathé Y, Creatore C, Eichler C, Tü-
reci HE, Chin AW, Wallraff A. Studying light-harvesting 
models with superconducting circuits. Nature Commun 2018; 
9(1): 904. DOI: 10.1038/s41467-018-03312-x. 

[20] Yu D, Dumke R. Open ising model perturbed by classical 
colored noise. Phys Rev A 2019; 100(2): 022124. DOI: 
10.1103/PhysRevA.100.022124. 



http://www.computeroptics.ru journal@computeroptics.ru 

380 Computer Optics, 2021, Vol. 45(3)   DOI: 10.18287/2412-6179-CO-776 

[21] Pfalzgraff W, Montoya-Castillo A, Kelly A, Markland T. 
Efficient construction of generalized master equation 
memory kernels for multi-state systems from nonadiabatic 
quantum-classical dynamics. J Chem Phys 2019; 150(24): 
244109. DOI: 10.1063/1.5095715. 

[22] Hwang-Fu Y-H, Chen W, Cheng Y-C. A coherent 
modified redfield theory for excitation energy transfer in 
molecular aggregates. Chem Phys 2015; 447: 46-53. DOI: 
10.1016/j.chemphys.2014.11.026. 

[23] Chin AW, Prior J, Rosenbach R, Caycedo-Soler F, Huelga 
SF, Plenio MB. The role of non-equilibrium vibrational 
structures in electronic coherence and recoherence in pig-
ment-protein complexes. Nat Phys 2013; 9(2): 113-118. 
DOI: 10.1038/nphys2515. 

[24] Lee MK, Huo P, Coker DF. Semiclassical path integral 
dynamics: Photosynthetic energy transfer with realistic en-
vironment interactions. Annu Rev Phys Chem 2016; 67(1): 
639-668. DOI: 10.1146/annurev-physchem-040215-112252. 

[25] Segal D, Agarwalla BK. Vibrational heat transport in mo-
lecular junctions. Annu Rev Phys Chem 2016; 67(1): 185-
209. DOI: 10.1146/annurev-physchem-040215-112103. 

[26] Plenio MB, Almeida J, Huelga SF. Origin of long-lived 
oscillations in 2d-spectra of a quantum vibronic model: 
Electronic versus vibrational coherence. J Chem Phys 
2013; 139(23): 235102. DOI: 10.1063/1.4846275. 

[27] Coish W, Baugh J. Nuclear spins in nanostructures. Phys 
Status Solidi B Basic Res 2009; 246(10): 2203-2215. DOI: 
10.1002/pssb. 200945229. 

[28] Barford W. Electronic and optical properties of conjugated 
polymers. Oxford: Oxford University Press; 2013. 

[29] Latune CL, Sinayskiy I, Petruccione F. Quantum force estima-
tion in arbitrary non-Markovian gaussian baths. Phys Rev A 
2016; 94: 052115. DOI: 10.1103/PhysRevA.94.052115. 

[30] Bylicka B, Chruscinski D, Maniscalco S. Non-
Markovianity and reservoir memory of quantum channels: 
a quantum information theory perspective. Sci Rep 2014; 
4(1): 5720. DOI: 10.1038/srep05720. 

[31] Xiang G-Y, Hou Z-B, Li C-F, Guo G-C, Breuer H-P, 
Laine E-M, Piilo J. Entanglement distribution in optical 
fibers assisted by nonlocal memory effects, EPL 2014; 
107(5): 54006. DOI: 10.1209/0295-5075/107/54006. 

[32] McCutcheon DPS, Dattani NS, Gauger EM, Lovett BW, 
Nazir A. A general approach to quantum dynamics using a 
variational master equation: Application to phonon-
damped rabi rotations in quantum dots. Phys Rev B 2011; 
84: 081305. DOI: 10.1103/PhysRevB.84.081305. 

[33] Jang S. Theory of coherent resonance energy transfer for 
coherent initial condition. J Chem Phys 2009; 131(16): 
164101. DOI: 10.1063/1.3247899. 

[34] Garraway BM. Nonperturbative decay of an atomic system 
in a cavity. Phys Rev A 1997; 55: 2290-2303. DOI: 
10.1103/PhysRevA.55.2290. 

[35] Mascherpa F, Smirne A, Somoza AD, Fernández-Acebal 
P, Donadi S, Tamascelli D, Huelga SF, Plenio MB. Opti-
mized auxiliary oscillators for the simulation of general 
open quantum systems. Phys Rev A 2020; 101: 052108. 
DOI: 10.1103/PhysRevA.101.052108. 

[36] Tamascelli D, Smirne A, Huelga SF, Plenio MB. Nonper-
turbative treatment of non-Markovian dynamics of open 
quantum systems. Phys Rev Lett 2018; 120: 030402. DOI: 
10.1103/PhysRevLett.120.030402. 

[37] Makri N, Makarov DE. Tensor propagator for iterative 
quantum time evolution of reduced density matrices. I. 
Theory. J Chem Phys 1995; 102(11): 4600-4610. DOI: 
10.1063/1.469508. 

[38] Makri N, Makarov DE. Tensor propagator for iterative 
quantum time evolution of reduced density matrices. II. 
Numerical methodology. J Chem Phys 1995; 102(11): 
4611-4618. DOI: 10.1063/1. 469509. 

[39] Strathearn A, Kirton P, Kilda D, Keeling J, Lovett BW. Ef-
ficient non-Markovian quantum dynamics using time-
evolving matrix product operators. Nat Commun 2018; 
9(1): 3322. DOI: 10.1038/ s41467-018-05617-3. 

[40] Prior J, Chin AW, Huelga SF, Plenio MB. Efficient simu-
lation of strong system-environment interactions. Phys Rev 
Lett 2010; 105: 050404. DOI: 
10.1103/PhysRevLett.105.050404. 

[41] Tamascelli D, Smirne A, Lim J, Huelga SF, Plenio MB. 
Efficient simulation of finite-temperature open quantum 
systems. Phys Rev Lett 2019; 123: 090402. DOI: 
10.1103/PhysRevLett.123.090402. 

[42] Nüßeler A, Dhand I, Huelga SF, Plenio MB. Efficient sim-
ulation of open quantum systems coupled to a fermionic 
bath. Phys Rev B 2020; 101: 155134. DOI: 
10.1103/PhysRevB.101.155134. 

[43] Tanimura Y. Stochastic Liouville, Langevin, Fokker–
Planck, and master equation approaches to quantum dissi-
pative systems. J Phys Soc Japan 2006; 75(8): 082001. 
DOI: 10.1143/JPSJ.75.082001. 

[44] Tanimura Y, Kubo R. Time evolution of a quantum system 
in contact with a nearly Gaussian-Markoffian noise bath. J 
Phys Soc Japan 1989; 58(1): 101-114. DOI: 
10.1143/JPSJ.58.101. 

[45] Tanimura Y. Reduced hierarchical equations of motion in 
real and imaginary time: Correlated initial states and ther-
modynamic quantities. J Chem Phys 2014; 141(4): 044114. 
DOI: 10.1063/1. 4890441. 

[46] Semin V, Sinayskiy I, Petruccione F. Arbitrary spin in a 
spin bath: Exact dynamics and approximation techniques, 
Phys Rev A 2014; 89: 012107. DOI: 
10.1103/PhysRevA.89.012107. 

[47] Rossi MAC, Paris MGA. Non-Markovian dynamics of 
single- and two-qubit systems interacting with Gaussian 
and non-Gaussian fluctuating transverse environments. J 
Chem Phys 2016; 144(2): 024113. DOI: 
10.1063/1.4939733. 

[48] Mwalaba M, Sinayskiy I, Petruccione F. Dynamics and 
thermalization in a simple mesoscopic fermionic bath, 
Phys Rev A 2019; 99: 052102. DOI: 
10.1103/PhysRevA.99.052102. 

[49] Pavelev A, Semin V. Investigation of non-Markovian dy-
namics of two dipole-dipole interacting Qubits based on 
numerical solution of the non-linear stochastic Schrödinger 
equation. Computer Optics 2019; 43(2): 168-173. DOI: 
10.18287/2412-6179-2019-43-2-168-173. 

[50] Vasilev D, Semin V. Qubit dynamics in extern laser field. 
Computer Optics 2019; 43(4): 562-566. DOI: 10.18287/ 
2412-6179-2019-43-4-562-566. 

[51] Iles-Smith J, Lambert N, Nazir A. Environmental dynam-
ics, correlations, and the emergence of noncanonical equi-
librium states in open quantum systems. Phys Rev A 2014; 
90: 032114. DOI: 10.1103/PhysRevA.90.032114. 

[52] De Santis D, Johansson M, Bylicka B, Bernardes NK, 
Acín A. Correlation measure detecting almost all non-
markovian evolutions. Phys Rev A 2019; 99: 012303. 
DOI: 10.1103/PhysRevA.99.012303. 

[53] Ali MM, Lo P-Y, Tu MW-Y, Zhang W-M. Non-
Markovianity measure using two-time correlation func-
tions. Phys Rev A 2015; 92: 062306. DOI: 
10.1103/PhysRevA.92.062306. 



Non-Markovian decoherence of a two-level system in a Lorentzian bosonic reservoir and a stochastic… Mikhailov V.A., Troshkin N.V. 

Компьютерная оптика, 2021, том 45, №3   DOI: 10.18287/2412-6179-CO-776 381 

[54] McCutcheon DPS. Optical signatures of non-Markovian 
behavior in open quantum systems. Phys Rev A 2016; 93: 
022119. DOI: 10.1103/ PhysRevA.93.022119. 

[55] Fleming C, Cummings NI, Anastopoulos C, Hu BL. The 
rotating-wave approximation: consistency and applicability 
from an open quantum system analysis. J Phys A Math 
Theor 2010; 43(40): 405304. DOI: 10.1088/1751-
8113/43/40/405304. 

[56] Mäkelä H, Möttönen M. Effects of the rotating-wave and 
secular approximations on non-Markovianity. Phys Rev A 
2013; 88: 052111. DOI: 10.1103/PhysRevA.88.052111. 

[57] Eastham PR, Kirton P, Cammack HM, Lovett BW, Keel-
ing J. Bath-induced coherence and the secular approxima-
tion. Phys Rev A 2016; 94: 012110. DOI: 
10.1103/PhysRevA.94.012110. 

[58] Jing J, Yu T, Lam C-H, You JQ, Wu L-A. Control relaxation 
via dephasing: A quantum-state-diffusion study. Phys Rev A 
2018; 97: 012104. DOI: 10.1103/PhysRevA.97.012104. 

[59] Jing J, Li R, You JQ, Yu T. Nonperturbative stochastic dy-
namics driven by strongly correlated colored noise. Phys Rev 
A 2015; 91: 022109. DOI: 10.1103/PhysRevA.91.022109. 

[60] Jing J, Wu L-A. Control of decoherence with no control, 
Sci Rep 2013; 3(1): 2746. DOI: 10.1038/srep02746. 

[61] Brian Walton D, Visscher K. Noise suppression and spec-
tral decomposition for state-dependent noise in the pres-
ence of a stationary fluctuating input. Phys Rev E 2004; 
69: 051110. DOI: 10.1103/PhysRevE.69.051110. 

[62] Wang ZH, Ji YJ, Li Y, Zhou DL. Dissipation and decoher-
ence induced by collective dephasing in a coupled-qubit 

system with a common bath. Phys Rev A 2015; 91: 
013838. DOI: 10.1103/PhysRevA.91.013838. 

[63] Semin V. Non-Markovian relaxation of a three-level atom 
in two laser fields with noise. Laser Phys 2020; 30(2): 
025204. DOI: 10.1088/1555-6611/ab65c3. 

[64] Biercuk MJ, Doherty AC, Uys H. Dynamical decoupling 
sequence construction as a filter-design problem. J Phys B-
At Mol Opt 2011; 44(15): 154002. DOI: 10.1088/0953-
4075/44/15/154002. 

[65] Wu W, Lin H-Q. Quantum zeno and anti-zeno effects in 
quantum dissipative systems. Phys Rev A 2017; 95: 
042132. DOI: 10.1103/PhysRevA.95.042132. 

[66] Wu W. Realization of hierarchical equations of motion 
from stochastic perspectives. Phys Rev A 2018; 98: 
012110. DOI: 10.1103/PhysRevA.98.012110. 

[67] Li J-G, Zou J, Shao B. Non-Markovianity of the damped 
jaynescummings model with detuning. Phys Rev A 2010; 
81: 062124. DOI: 10.1103/PhysRevA.81.062124. 

[68] Mikhailov VA, Troshkin NV. Non-Markovian dynamics of 
a two-level system in a bosonic bath and a gaussian fluctu-
ating environment with finite correlation time. Phys Rev A 
2021; 103: 012208. DOI: 10.1103/PhysRevA.103.012208. 

[69] Mikhailov VA, Troshkin NV. Master equation averaged 
over stochastic process realizations for the description of a 
three-level atom relaxation. Computer Optics 2016; 40(5): 
649-653. DOI: 10.18287/2412-6179-2016-40-5-649-653. 

[70] Risken H, Frank T. The Fokker-Planck equation. Berlin, 
Heidelberg: Springer-Verlag; 1996. DOI: 10.1007/978-3-
642-61544-3. 

 

 

Authors’ information  

Victor Alexandrovich Mikhailov (b. 1952) graduated from Kuibyshev Aviation Institute in 1975 (KuAI; presently 
Samara National Research University named after academician S.P. Korolyov), majoring in Aircraft Engines, graduated 
from Kuibyshev State University, the faculty of physics, in 1981, majoring in Theoretical Physics, Candidate of Physi-
cal and Mathematical Sciences, associate professor of the Physics department at Samara National Research University. 
Research interests are in generalized coherent states, dynamics and relaxation of quantum systems, Fokker-Planck equa-
tions. E-mail: va_mikhailov@mail.ru . 

 
Nikolay Vyacheslavovich Troshkin (b. 1989) graduated from Samara State Aerospace University in 2012 (SSAU; 

presently Samara National Research University named after Academician S.P. Korolev), majoring in Applied Physics, 
postgraduate student at Samara National Research University. Research interests are in quantum many-body physics, 
low-rank approximations, algorithms. E-mail: nick.troshkin@gmail.com . 
 

 

Received July 3, 2016. The final version – December 7, 2020. 
 

 

 


