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Abstract  

In this paper, attempts have been made to study the joint effects of apodization and aperture 
masking on the diffraction images of coherently illuminated straight edge. The Edge-Ringing, 
Edge-Shift and Edge-Eradient of the edge images have been evaluated for different values of 
apodization using edge masking of circular apertures. We have considered rotationally symmetric, 
aberrated coherent optical system. These investigations have lead to the use of certain pupil func-
tions in conjunction with optimal apodizers to assess the quality of edge images. Any obstruction 
placed in the light path of an optical system prevents waves from a portion of the wavefront in 
reaching the focal zone. This results in the change in the light flux at every point of the diffraction 
pattern. This is in turn, depends on the shape and size of the obstruction. 
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Introduction 

Apodization can be accomplished in several ways i.e., 
by altering the shape of the aperture or its transmission 
characteristics [1]. The former is known as “Aperture 
Shaping” in which the shape and size of the aperture is al-
tered. The later is known as “Aperture Shading” by using 
a spatial filter over the pupil from point to point (Mondal 
and Venkat Reddy, 1987). Thus apodization is the pro-
cess of changing the energy distribution in the point 
spread function by deliberate manipulation of the pupil 
function so as to improve some measure of the image 
quality [2]. Apodization in optics is similar to pulse shap-
ing in electrical engineering [3, 4]. Straubel may be con-
sidered as the founder of apodization theory [5]. When 
the amplitude transmittance of the pupil is gradually de-
creased from the center to edge of the pupil, the higher 
spatial frequencies are reduced and this manifests as sup-
pression of side lobes. Apodization is one aspect of the 
more encompassing technique of “spatial filtering” 
(Hecht and Zajac, 1987). Apodization is useful in im-
proving selected aspects of the imaging performance of 
an aberrated optical system [6 – 9]. Several researchers 
have studied the edge-ringing and edge-shifting proper-
ties of different pupil functions with a motivation to im-
prove the quality of images [10 – 12]. The edge ringing is 
the difference between the first maximum intensity of the 
edge fringes and the unit object intensity. Edge-shift, 
which is also called the image shift, is the distance of the 
image edge at half of the intensity value of the object 
edge. Edge-gradient is the increase in image intensity 
over an unit change in Z around the geometric edge (i.e., 
Z = 0). It is desirable to design a system which would 
yield real and positive amplitude impulse to avoid the 

edge-ringing in coherent and partially coherent illumina-
tions. This problem has been investigated and shown that 
the edge ringing is controllable by suitable apodizers 
[13]. Aperture shaping mitigates the deleterious effects of 
edge ringing in coherent imagery in the absence and pres-
ence of aberrations. The distinguishing feature of coher-
ent optical system is the existence of a sharp cut-off of 
the transfer function. An edge object has strong high fre-
quency components. The cut-off of the coherent optical 
system is effectively at a low value as compared to Fouri-
er spectrum of the sharp edge and physical result is the 
unwanted edge ringing [14].  

Apodization can be used for various purposes, in par-
ticular, for suppression of optical side-lobes in the dif-
fraction field of an optical imaging system [15 – 16], for 
increasing depth of field [17 – 21] and also to enhance 
resolution [22 – 27]. The efficiency of apodization tech-
nique is always associated with the design of the pupil 
function. It is known that apodization in order to reduce 
the size of the focal spot of the point spread function 
(PSF) often leads to the growth of side lobes. Therefore, 
various approaches to finding a compromise solution are 
considered [28 – 32]. 

The presence of these spurious fringes in the edge re-
sponse and the apparent shift of the imaged edge, cause 
the location and the measurement of the edge, difficult. 
Studies on this subject indicate the importance of coher-
ent imagery in areas like spatial filtering techniques and 
microscopy. 

Theory and formulation 

An opaque straight edge is one which is bright on one 
side of a line and dark on the other. The mathematical 
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form of amplitude transmission of an opaque straight 
edge object [33] is given by  
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Fig. 1. Edge response 

It is evident that A(u) is non-converging. Therefore, it 
does not permit Fourier transformation directly. Howev-
er, this difficulty can be overcome by expressing it in 
terms of “signum” function as 
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Where Sgn (u) is defined as 
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A sequence of transformable functions which ap-
proach Sgn (u) as a limit should be considered, as this 
function also has a discontinuity at u = 0.  
For example, the function  
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Hence the Fourier transform of equation (3) will be  
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As   0, the above expression equals to (1 / i  x) i.e.,  
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Thus expressing the straight edge in terms of Sgn (u) as 
given in (2) and its Fourier transform can be obtained as  
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Where,  (x) is the well–known Dirac-delta function. 
The expression (5) gives the Fourier spectrum of the ob-
ject amplitude distribution defined by (1). In this spec-
trum, the presence of a large zero frequency impulse at 
x = 0 is observed, in addition to the other non-zero fre-
quency components. Looking at the object function in fig 
(1), it appears at the first sight that A (u, v) is purely zero 
frequency input to the optical system and therefore, the 
presence of those non-zero frequencies in the spectrum of 
such an object may appear rather strange. It should be, 
however, observed that the object function has zero 
transmission over one-half in its own plane and a trans-
mission equal to unity over the other half. In other words, 
A (u, v) is zero for u  0 and then there is an abrupt dis-
continuity at u = 0. Thus, A (u, v) is not a true D.C. signal 
as it is not constant over the entire interval ranging from –
  to  and this explains the presence of the other fre-
quency components in the spectrum. 

The imaging positions, encountered in optics are gen-
erally concerned with objects where amplitude or intensi-
ty variations are to be considered in two dimensions. The 
complex object amplitude distribution as defined in equa-
tion (1) implies that there is no variation in amplitude 
transmission of the object along the entire y-direction. 
This will give rise to an infinite impulse at y = 0 in the 
spectrum plane and can be represented by the Dirac-delta 
function  ( y). Finally, therefore, the two-dimensional 
F.T. of the object function is obtained as 
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The above expression gives the spectrum of the object 
amplitude distribution A (u, v) at the entrance pupil of the 
optical system. The modified object amplitude spectrum 
at the exit pupil of the optical system will be given by 

     ' , , . , .a x y a x y T x y  (7) 

Where T (x, y) is the pupil function of the given opti-
cal system having aberrations can be expressed [33] as 

   , , exp[ ( , )]. T x y f x y i x y  (8) 

Where  (x, y) denotes the amplitude transmittance 
over the pupil and  (x, y) indicates the wave aberration 
function of the optical system. In the absence of apodisa-
tion,  (x, y) is taken to be equal to unity i.e., for the Airy 
pupils,  (x, y) = 1.  

For defocus and primary spherical aberrations, the ab-
erration function can be expressed as 
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Here d
 - defocus coefficient, s

 - primary spherical 
aberration coefficient and is the normalized distance of an 
arbitrary point on the pupil from its centre. 

2 2 . r x y  

From expressions (6), (7) and (8) the modified ampli-
tude spectrum at the exit pupil is given by 
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The above equation (9) gives the modified spectrum 
of the object at the exit pupil of the system. The complex 
amplitude distribution in the image plane will be given by 
the inverse F.T. of (9). Therefore, 
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The integration limits of equation (10) are only formal 
because the pupil function given by T (x, y) vanishes out-
side the pupil and can be assumed to be unity inside. 
Thus, after some manipulation in the integration of Eq. 
(10) by employing the filtering property of Dirac-delta 
function the expression (10) can be simplified as 
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The filtering property of Dirac-delta function is repre-
sented by 
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For the central transmittance of the pupil function 
 (0) = 1, then the expression (11) can be expressed as 
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For the rotationally symmetric pupil function  
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Setting 2u= Z in equation (13), then it reduces to the 
more explicit formula for the image of an edge object. 
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Further simplification leads to  
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The present work deals with the one-dimensional 
straight edge object and hence, the general form of ampli-
tude distribution is given by  

     
  1

'

0

sin1 1
,0 exp , 0 .

2
     

Z x
A Z f x i x dx

x
 (16) 

Pupil function (r) for the Hanning amplitude filter  is 
given by  

  2cos ( ). f r r  

Here β is the apodization parameter. The term β con-
trols the degree of non-uniformity of transmission over 
the pupil. A value of β = 0, corresponds to diffraction lim-
ited airy system having uniform transmission of unity 
over the entire aperture.  

For the given aperture apodized with the Hanning 
amplitude filter in the presence of defocus  and primary 
spherical aberration the expression (16) becomes  
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Here 0 < ε ≤ 1 is the edge masking parameter. 
The intensity distribution of an edge image formed by 

an apodized optical system is given by the squared modu-
lus of expression (17) 

  2
' .B Z A  (18) 

Results and discussion 

The investigations on the effects of aperture masking 
on the images of edge objects formed by coherent optical 
systems apodized by the Hanning amplitude filter in the 
presence of defocus and primary spherical aberrations 
have been evaluated using the expressions (18) by em-
ploying Matlab simulation. The intensity distribution 
B (Z) in the images of straight edge objects has been ob-
tained for different values of dimensionless diffraction 
variable Z varying from – 3 to + 20.  

The image quality assessment parameter such as 
Edge-Ringing (ER), Edge-Shift (ES) and Edge-Gradient 
(EG) have been studied for various values of apodization, 
aberrations and aperture edge masking parameter. The 
edge masking parameter of the aperture considered is 
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ε = 1, 0.9, 0.8, 0.7, 0.6 and 0.5. However the value ε = 1 
represents the case of circular aperture. 
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Fig. 2. Unapodized edge image intensity distributions  

by aberration-free and edge masked aperture 
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Fig. 3. Unapodized edge image intensity distributions  

by aberrated and edge masked aperture 

Fig. 2 shows the intensity distribution profile of the 
straight edge for unapodized and aberration free optical 
system (Airy case) for both the circular and the edge 
masked apertures. The edge ringing is pronounced and is 
insensitive to edge masking parameter ε as the system is 
unapodized. Fig. 3 illustrates the case where the apodiza-
tion parameter is β = 0 when d

 = π and s
 = 2π. For the 

un-masked aperture, the negative maximum amplitude 
increases and hence the presence of ringing is much more 
pronounced. 
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Fig. 4. Apodized edge image intensity distributions by aberrated 

and edge masked aperture 

However, by increasing the masking zone of the circu-
lar aperture, the unwanted edge ringing has been reduced 
along with the edge shift at the cost of decrease in the edge 
gradient as the system is unapodized. From the fig. 4 it is 
observed that, at the apodization parameter β = 0.5, by in-
creasing the masking zone of the aperture, i.e., from ε = 1 
to 0.7, the unwanted edge ringing and edge shift have been 
reduced and an improvement in the edge gradient.  

Figures from 5 to 7 depict the intensity distribution of 
edge images when the coherent optical system is at the 
defocused plane d

 = 2π in the presence of primary spher-
ical aberration and apodized by the Hanning amplitude 
filter. We found that, increase in edge ringing with edge 
masking parameter ε for d

 = π / 2 and π planes, but it de-
creases along with increase in edge gradient at d

 = 3π / 2, 
2π in the presence of apodization. Hence these defocused 
planes may be designated as the optimal receiving image 
planes to reduce the effect of primary spherical aberra-
tions. It is evident that the apodized optical systems are 
more sensitive to aperture edge masking than the un-
apodized ones. The effect of primary spherical aberration 
is also studied and seen that, at certain defocused planes, 
i.e., at d

 = 2π, aperture edge masking lowering the ring-
ing effect even in the absence of aperture shading and it is 
more effective with the aperture shading. From the inten-
sity distribution profiles, it is evident that, Hanning am-
plitude filter is very helpful in suppressing the ringing ef-
fect even in the presence of primary spherical aberration 
and defocus at β = 0.5. It is also fine for aperture masking 
as there is little variation of the skimming of light (ring-
ing-effect) for various values of ε with the apodization. 
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Fig. 5. Unapodized edge image intensity distributions  

by aberrated and edge masked aperture 
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Fig. 6. Apodized edge image intensity distributions  

by aberrated and edge masked apertures 
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Fig. 7. Apodized edge image intensity distributions  

by aberrated and edge masked apertures 

Fig. 8 shows the variation of the edge- ringing with 
the aperture edge masking parameter ε for different defo-
cused planes in the presence of primary spherical aberra-
tion with and without apodization. 
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Fig. 8. Variation of Edge Ringing with ε 

The magnitude of edge-ringing is found to be almost 
constant for all the values of ε as the system is aberration-
free and unapodized, i.e., for Airy pupil. For the planes 
d

 = π / 2 and π, the edge-ringing is  increasing with ε but 
it is in decreasing trend for d

 = 3π / 2 and 2π and attains 
the minimum (0.13946) value at ε = 0.7 for d

 = 2π, when 
β=0.5. The similar features are observed for various de-
gree of primary spherical aberration. For these values the 
edge-ringing is almost the same. The edge-ringing is 
much more pronounced with ε varies from 1 to 0.7 for the 
defocused planesd

 = 0, π / 2 and π. But it attains much 
lower value for d

 = 3π / and 2π at ε = 0.7.  
Fig. 9 depicts the edge gradient curves for s

 = 2π and 
d

 = 2π for apodization values β = 0, 0.25 and 0.5. The 
value of edge gradient for the clear circular aperture 
(ε = 1) is lower when compared to that of the masked ap-
erture. Clearly, there is an increase in the edge gradient 
(E.G) with ε decreasing. Even for high values of defocus 
and primary spherical aberration, it is evident that there is 
an improvement in the edge gradient with ε decreasing 
from 1 to 0.65 for β ≤ 0.5. 

The variation in the edge shift has been presented for 
different values of ε in fig. 10 when the optical system 
apodized with β = 0, 0.25and 0.5 in the presence of both 

defocus and primary spherical aberration. It is observed 
that with ε varying from 1 to 0.5, the edge shift increases 
for d

 = π and s
 = 2π when the system is un-apodized but 

it is in decreasing trend when the system is apodized . 
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Fig. 9. Variation of Edge Gradient with ε 
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Fig.10. Variation of Edge Shift with ε 

However, edge shift is the minimum at ε = 0.7 when 
d

 = 2π and s
 = π and at ε = 0.65 when d

 = 2π and 
s

 = 2π. For these planes the edge shift shows a remark-
able decrease in its value, which in turn enhances the 
edge gradient.  

Tab. 1provides the computed values of edge ringing, 
edge gradient, edge shift and the product of edge gradient 
and edge shift for various values of apodization parame-
ter β, edge masking parameter ε and different degrees of 
primary spherical aberration when the optical system is 
studied at various focal planes. It is seen that with edge 
masking parameter ε the edge ringing decreases with de-
focus. However, the edge ringing is less for clear circular 
aperture when compared to that of masked one in the ab-
sence of apodization. For β = 0.5 the decrease in edge 
ringing is almost 56.6 % when d

 = π. This reduction in 
the edge ringing is almost 56.4 % when s

 = d
 = π and 

ε = 0.5. When s
 = d

 = 2π and ε = 0.65, the decrease in 
edge ringing is about 62.3 % when the optical system is 
apodized with β = 0.5. The product of ES and EG is al-
most constant for β = 0.5. 
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Tab. 1 Variation of ER, EG, ES and EG*ES  
with εfor β = 0, 0.25 and 0.50 

 β ε ER EG ES EG*ES 

d
 = π 

 

 

s
 = π 
 

0 

0.50 
0.55 
0.60 
0.65 
0.70 
0.75 
0.80 
0.85 
0.90 
0.95 
1.00 

0.1809 
0.1784 
0.1746 
0.1705 
0.1653 
0.1592 
0.1530 
0.1493 
0.1500 
0.1596 
0.1785 

0.1557 
0.1695 
0.1824 
0.1940 
0.2040 
0.2118 
0.2170 
0.2191 
0.2177 
0.2125 
0.2034 

1.3550 
1.2425 
1.1525 
1.0800 
1.0225 
0.9800 
0.9500 
0.9350 
0.9300 
0.9425 
0.9700 

0.2109 
0.2106 
0.2103 
0.2096 
0.2086 
0.2076 
0.2062 
0.2049 
0.2025 
0.2002 
0.1973 

0.25 

0.50 
0.55 
0.60 
0.65 
0.70 
0.75 
0.80 
0.85 
0.90 
0.95 
1.00 

0.1504 
0.1425 
0.1334 
0.1245 
0.1154 
0.1073 
0.1007 
0.0974 
0.0984 
0.1044 
0.1146 

0.1481 
0.1597 
0.1702 
0.1792 
0.1866 
0.1922 
0.1957 
0.1970 
0.1962 
0.1933 
0.1886 

1.4275 
1.3225 
1.2375 
1.1725 
1.1250 
1.0875 
1.0650 
1.0525 
1.0500 
1.0600 
1.0775 

0.2114 
0.2112 
0.2106 
0.2101 
0.2099 
0.2090 
0.2084 
0.2074 
0.2060 
0.2049 
0.2032 

0.50 

0.50 
0.55 
0.60 
0.65 
0.70 
0.75 
0.80 
0.85 
0.90 
0.95 
1.00 

0.0788 
0.0644 
0.0514 
0.0411 
0.0344 
0.0299 
0.0283 
0.0280 
0.0279 
0.0281 
0.0281 

0.1280 
0.1344 
0.1394 
0.1429 
0.1453 
0.1467 
0.1473 
0.1475 
0.1475 
0.1474 
0.1474 

1.6600 
1.5825 
1.5275 
1.4875 
1.4625 
1.4500 
1.4425 
1.4400 
1.4400 
1.4400 
1.4400 

0.2125 
0.2127 
0.2129 
0.2126 
0.2125 
0.2127 
0.2125 
0.2124 
0.2124 
0.2123 
0.2123 

d
 = 2π 

 

 

s
 = 2π 

 

0 

0.50 
0.55 
0.60 
0.65 
0.70 
0.75 
0.80 
0.85 
0.90 
0.95 
1.00 

0.1662 
0.1583 
0.1499 
0.1456 
0.1505 
0.1708 
0.2045 
0.2438 
0.2779 
0.3028 
0.3111 

0.1474 
0.1560 
0.1616 
0.1632 
0.1602 
0.1526 
0.1407 
0.1259 
0.1109 
0.0993 
0.0948 

1.4200 
1.3350 
1.2775 
1.2525 
1.2550 
1.2900 
1.3600 
1.4625 
1.5825 
1.6875 
1.7450 

0.2093 
0.2083 
0.2064 
0.2044 
0.2011 
0.1968 
0.1913 
0.1841 
0.1755 
0.1675 
0.1654 

0.25 

0.50 
0.55 
0.60 
0.65 
0.70 
0.75 
0.80 
0.85 
0.90 
0.95 
1.00 

0.1388 
0.1282 
0.1194 
0.1148 
0.1196 
0.1348 
0.1568 
0.1794 
0.1984 
0.2095 
0.2124 

0.1407 
0.1480 
0.1524 
0.1537 
0.1515 
0.1461 
0.1381 
0.1287 
0.1198 
0.1133 
0.1109 

1.4925 
1.4125 
1.3625 
1.3400 
1.3450 
1.3750 
1.4275 
1.5000 
1.5750 
1.6375 
1.6650 

0.2100 
0.2090 
0.2077 
0.2060 
0.2040 
0.2009 
0.1971 
0.1931 
0.1886 
0.1854 
0.1846 

0.50 

0.50 
0.55 
0.60 
0.65 
0.70 
0.75 
0.80 
0.85 
0.90 
0.95 
1.00 

0.0762 
0.0642 
0.0568 
0.0548 
0.0563 
0.0597 
0.0620 
0.0629 
0.0631 
0.0631 
0.0628 

0.1229 
0.1269 
0.1290 
0.1295 
0.1288 
0.1275 
0.1261 
0.1250 
0.1244 
0.1243 
0.1243 

1.7225 
1.6650 
1.6325 
1.6225 
1.6250 
1.6375 
1.6500 
1.6600 
1.6675 
1.6675 
1.6700 

0.2116 
0.2112 
0.2106 
0.2101 
0.2093 
0.2088 
0.2080 
0.2075 
0.2075 
0.2072 
0.2075 

Conclusions 

The important conclusions of the investigations on the 
effects of aperture masking on the images of straight edge 
objects formed by the coherent aberrated optical system 
apodized with the amplitude filters are summarized as: 
All the maxima on the bright side depend on the amount 
of masking zone of the aperture. It means edge images 
can be restored by decreasing the band pass region of the 
aperture. The un-apodized optical systems are less sensi-
tive to the aperture masking in the absence of defocus 
than the apodized ones. The unwanted edge ringing is 
found to reduce even at defocused planes with the aper-
ture edge masking. 

Apodization along with aperture masking is useful in 
improving the performance of defocused coherent optical 
systems. For d

 = 2π the edge ringing shows a decreasing 
trend and there is an improvement in edge gradient for 
both unapodized and apodized optical systems with edge 
masking of the aperture. Hence at this defocused plane the 
optical system can be considered to be optimum in edge 
imaging. By edge masking of the aperture, we can reduce 
the diffraction effects and improve contrast. This technique 
in the telescopes reduces the image blurring effects of at-
mospheric turbulence and sharpening the image. 
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