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Abstract  

This study proposes analytical estimate for the size of a binary raster figure region which is 
guaranteed to contain the rotational symmetry focus. Focus here is the point a maximum Jaccard 
index between initial figure and rotated one. The size of the region is determined by the lower es-
timate of the intersection area during the rotation of the approximating primitives, considering the 
sizes of the inner and outer parts of the figure relative to the primitive. The smallest circumscribed 
circle or ellipse and sets of concentric circles and ellipses produced by the principal component 
analysis were used as the approximating figure. To verify the hypothesis that the size of the region 
is insignificant compared to the area of the figure, we numerically simulated the proposed method 
with test image datasets.  
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Introduction 

Rotational symmetry detection is not a popular prob-
lem in computer vision research, although it was studied 
in [1 – 4]. One way to detect the central point (focus) and 
determine the degree of symmetry is by representing the 
figure boundary with a special code with subsequent 
analysis of the cyclic structure in the resulting sequence. 
The method presented in the most recent paper [5] 
demonstrates good detection in perfectly symmetric fig-
ures, but the study does not cover the approximate sym-
metry detection or the corresponding metrics. 

The study [6] proposes to use the intuitive Jaccard index 
(the ratio of the intersection over the union) for the original 

and rotated figures (see Fig. 1) as a symmetry measure to 
find the most suitable position of the central symmetry focus 
in binary raster images [7]. In this study the focus is under-
stood as the point that maximizes the symmetry function de-
scribing dependence of the symmetry measure on the rota-
tion point. It is assumed that the solutions found can be veri-
fied with the basic exhaustive brute-force procedure applied 
to all the image pixels in some neighborhood of interest. The 
optimal symmetry measure value estimated for real-life im-
ages (e.g., scanned plant leaves, binarized objects of interest 
in digital photos) rarely reaches 1. In [6] authors call images 
with a symmetry measure close to 1 as having rotational 
“quasi-symmetry”. We mean this fact, but we will not use 
this term in this paper. 

 
Fig. 1. Example: the symmetry function value s as the figure is rotated around a point. The original figure is blue, the rotated figure 

is red, and their intersection is black
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For each point in the region of interest, we can plot 
the Jaccard index J () vs. angle curve 0 (see Fig. 2, 3) 
with a certain discretization rate at the angles. By analyz-
ing such curves at various points of the image we can lo-
cate the rotational symmetry focus and estimate the de-
gree (order) of symmetry. Note that if only central sym-
metry (degree 2) is considered, or there are assumptions 
about the degree k of the figure’s rotational symmetry, we 
can use only k /2 discrete angles in 2 /k increments. 
For example, for a figure with degree 7 it is sufficient to 
consider only three rotations by 2 /7, 4 /7, and 6 /7 
angles. This assumption significantly reduces the compu-
tational cost: it is enough to estimate the degree of sym-
metry for several discrete angles. Still, to find the focus 
(the point with the max Jaccard index representing the 
symmetry between the original and the rotated figures) 
we should either look through the points of some region 
of a given size or use the quick search procedure which 
skips some points. 

a)    

b)  
Fig. 2. a) Figure in the binary image. b) Jaccard index values 

as the figure rotates around the center of mass (red curve) 
and the rotational symmetry focus (green curve) 

The paper [6] proposes such a quick procedure based 
on the quadratic approximation of the symmetry function. 
However, the size of the neighborhood is set arbitrarily. 
Particularly, the points within a circle with the radius r 
and center coinciding with the center of mass of the bina-
ry raster image are considered the neighborhood points. 
The size of the neighborhood region is defined as r = R, 
where R is the radius of the circle circumscribed around 
the figure, or the distance from the center of mass to the 
farthest point of the figure, (0..1 is the value specify-
ing the size of the search domain (see Fig. 3). For the 
numerical experiments, this value was set to 0.1 or 0.15 
without any theoretical explanation. Obviously, the great-
er the  value, the more points are to be evaluated. 

The method proposed in [8] is also reduced to the de-
tection of the region of interest which contains the rota-
tional symmetry focus. For this, the Radon transform of 
the binary figure is analyzed. It is shown that the upper 
estimates on the Jaccard index can be found by compar-
ing the transform curves for the angles that are shifted by 

the angle of rotation apart. As a result, the Jaccard index 
is calculated only for the focus positions with the upper 
estimate better than that of the initial approximation. 

a)  

b)  
Fig. 3. a) The central symmetry focus search domain around 
the center of mass r = R,  = 0.15. b) The central symmetry 
function value in the neighborhood of the center of mass (red 

dot). The green dot marks the maximum value 

In this study, we showed how the size of the circle or 
ellipse neighborhood containing the rotational symmetry 
focus can be obtained analytically. We also assume that 
the size is small relative to the size of the figure. To con-
firm this hypothesis, we estimated the performance of the 
proposed procedure as the ratio of the detected region 
size to the size of the circumscribed circle of the figure. 

In general, approximation rather than the precise cal-
culation of the geometric properties of a figure by statisti-
cal analysis of its coordinates or their projections can in-
deed be found in computational geometry and computer 
vision problems. For example, the paper [9] gives ap-
proximate estimates of the size of the bounding rectangu-
lar parallelepiped with its sides being parallel to the axes 
of the principal components relative to the min size 
bounding parallelepiped. The study [10] offers approxi-
mate estimates for the distance between convex polyhe-
dra using their circumscribed ellipsoids. 

1. Neighborhood definition 
1.1.  The general principle of determining the neighbor-

hood containing the focus of the central symmetry 

We will consider the basic case of degree 2 rotational 
symmetry (central symmetry). It is reduced to the com-
parison of the original image and the image rotated by 
180 degrees. 

The general approach to estimating the shape and size 
of the region which contains the optimal central sym-
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metry is as follows. Let the figure A, for which we detect 
the focus position, be inscribed in the figure B. When ro-
tated around the optimal focus by the same angle (and af-
ter any bijective transform in general), the A and B fig-
ures are generated, respectively. Then the figure A A is 
inscribed into the figure B B. As we know the lower es-
timate of |A A|, we can use it as the estimate from be-
low for |B B|, reducing the rotation parameters to the 
values for which this estimate is valid (Fig. 4). 

а)  b)  
Fig. 4. Illustration of upper bound of intersection estimation 
using enveloping figure. a) Original figure (blue and black), 

rotated figure (red and black), and their enveloping rectangles. 
b) The possible position of rotation point (the boundary of the 

yellow figure) with fixed intersection area between rotated 
(colored) and initial (black) rectangles 

1.2.  Circumscribed circle 

As the circle is “isomorphous” in all directions, it is 
convenient to use circles circumscribed around the fig-
ures. Then |B B| for the fixed circle radius r depends 
only on the distance d from circle center to the pivot 
point. At d  r, the intersection of the circles is a lens-
shaped region consisting of two equally-sized circular 
segments (Fig. 5a). At d > r, the intersection is empty. 

a)          

b)  
Fig. 5. a) The intersection of the circles is symmetrical about the 

point C. b) The intersection area share for the circle area vs. 
distance to the pivot point is expressed in fractions of the radius 

Segments' angular value is 2arccos (d/r). Respective-
ly, the area of the lens-shaped region is: 

2 2arccos sin 2arccos
( , ) 2 , ,

2
0 .

d d
r

r rL d r d r

d r

          

 

 (1) 

To remove the second argument, we will represent d 
not as an absolute value but as a fraction of the radius 
d̂ = d/r. The area is also normalized to the total area of the 
circle r2 (to obtain a fraction of the area): 

 
 ˆ ˆ2arccos sin 2arccos

ˆ, 1,ˆ

ˆ0, 1.

d d
dL d

d

 
   




 (2) 

Fig. 5b shows the function plot. It is decreasing in d̂ 
over the [0,1] segment, so for |A A| = s the following 
statement is true: if the fraction of the intersection area is 
not less than ŝ = s /r2 of the area of the circumscribed 
circle B with the radius r, the optimal pivot point is no 
farther than rL–1 (ŝ ) from the center B, since only for such 
values the lens-shaped region sufficient to contain the en-
tire intersection region is at its minimum. Note: for ŝ  0, 
L–1 (ŝ ) is assumed equal to + ∞. 

To estimate |A A| from below, it would be natural to 
use some approximation of the optimal pivot point, e.g., 
the center of mass of the figure A. The circumscribed cir-
cle should have the smallest radius possible (its center 
does not have to be at the center of mass) to increase the 
fraction of the area and diminish the multiplier at L–1 (ŝ ). 
The result is shown in Fig. 6. It leads to the conclusion 
that the estimate obtained so far is very imprecise. 

 
Fig. 6. Minimum circumscribed circle-based estimate. The 
original figure is blue, the symmetric figure relative to the 

center of mass is red, and their intersection region is black. The 
circumscribed circles of figures have the same colors. The 

green circle is one of the circles which intersect the original 
circle producing a lens-shaped region with a size equal to the 

size of the intersection region. The turquoise circle is the 
neighborhood containing the optimal pivot point. The center of 
mass is the green dot. The turquoise point is the optimal focus 

1.3.  Circumscribed ellipse 

An obvious disadvantage of the above method is the 
overestimation of elongated figures. The fraction of their 
area relative to the area of the circumscribed circle is low, 
which leads to a low ŝ and a higher distance from the 
possible pivot point position to the center of the circle. 



Constraints for Jaccard index-based rotational symmetry focus position in binary images Lomov N.A., et al. 

Компьютерная оптика, 2023, том 47, №6   DOI: 10.18287/2412-6179-CO-1357 951 

We will use an ellipse as the circumscribed figure. The 
ellipse equation is: 

1 2( ) ( ) ,T r  p q M p q  (3) 

where M is a positive definite matrix, q is a center of el-
lipse. For a central symmetry with the center at c the 
point p such that c is the midpoint of the segment pp (in 
other words, p = 2c – p) is symmetric to the point p. Then 
for center of symmetry q = 2c – q 

1
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 (4) 

that is, p belongs to the ellipse with the center at q pro-
duced by shifting the original one. We will apply a linear 
transform of coordinates using the matrix. The transform 
maps point p*= M –1/2p to point p. Therefore, p = M 1/2p*. 
After the transform, the points of the original ellipse are 
defined by the equation 

1

1/2 1 1/2

2

( ) ( )

( ) ( ) ( )

( ) ( ) ,

T
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T r





  
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  

p q M p q
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 (5) 

that is the equation of a circle with the radius r. Note that 
the transform increases the areas by a factor of det M –1/2 
(or decreases by a factor of 1/2det detM M ). Then, 
the area of the original ellipse is det M  times of the 
circle area and is equal to 2 detr M . Since the direc-
tions of the major axes of the original and rotated ellipses 
coincide, after the transform, both ellipses turn into cir-
cles. We can assume that the problem is reduced to the 
previous one (Fig. 7b).  

a)  

b)  
Fig. 7. Minimum circumscribed ellipse-based estimate. 

a) Constructions in the original space. b) Constructions in the 
"expanding" space, reducing the problem to the case of circles. 

Refer to Fig. 6 for the colors 

Since the affine transform does not change the ratio of 
areas, we can again apply the rule: if the fraction of the 
intersection area |A A| = s is not less than 

2ˆ / dets s r  M  of the circumscribed ellipse area E de-
fined by the equation (p– q)T M –1(p– q) = r2, the opti-
mal pivot point is located inside a concentric figure ob-
tained by compressing the original figure along the axes 
L–1 (ŝ )-fold, that is, the ellipse defined by the equation 
(p– q)T M –1(p– q) = (rL–1 (ŝ ))2 (refer to Fig. 7a). Note 
that this estimate is certainly no worse than the first one 
since the circle is a special case of the ellipse. For the fig-
ure shown in Figs. 6 –7 the area of the elliptic neighbor-
hood is 45 % of the circle area. 

1.4.  Approximating circle/ellipse 

Another disadvantage of this approach is its low re-
sistance to noise. If we add thin protrusions or, moreover, 
isolated points to the figure, the size of the circumscribed 
circle may increase dramatically, despite that neither the 
area nor shape of the figure changed significantly. We 
need an approach that ignores such shape changes as far 
as possible. We will relax the requirements for the ellipse. 
Now the ellipse is allowed not to cover the figure com-
pletely, but to cover as much of the figure as possible 
while having the smallest radius possible. For the ellipse 
E let us suppose that a part of the figure A with the area 
sin is inside it, and a part of the figure A with the area sout 
is beyond it. Then |A A| is the sum of the intersection 
region areas inside and outside the elliptical lens-shaped 
region, and the former does not exceed sin, while the latter 
does not exceed sout. We need to find the lower estimate 
of the lens-shaped region area. s – sout can be used as 
such. Then the estimate for the given ellipse is: 

1

2
.

det
outs s

d rL
r

  
   M

 (6) 

Fig. 8 shows an example of an estimate with this ver-
sion of the method. 

 
Fig. 8. Approximating ellipse-based estimate. The part of the 
figure outside the intersection of the ellipses is filled with pale 

colors. Otherwise, the colors are the same as in Figs. 6-7 

1.5. Rotational symmetry of degrees greater than 2 

So far, we considered central symmetry or rotational 
symmetry of degree 2. The solution is reduced to the 
comparison of the Jaccard indices of the two figures. 
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When analyzing a degree k > 2 symmetry, it is natural to 
make a general comparison k of the figures A0,Ak–1 re-
sulting from rotations by  

1
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2
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k

i

i

k





 
 
 

 

The study [8] proposes to average the pairwise compari-
son metrics using the generalized Jaccard index 
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 (7) 

As such a comparison is identical to the rotations by  
and – , the problem can be simplified to k /2 rotations: 

 
 

1
2

1
2

2

2

2

2

01

01
( )

1
0 01

1
0 01

, isodd,

( )
2

, iseven.
2

k

k

k

k

k

k

ii

ii
k

ii

ii

A A
k

A A
J A

A A A A
k

A A A A
















 

 


 
  


   







(8) 

Since this value is monotonically dependent on the 
numerator, it is sufficient to optimize only the numerator. 
Let us consider the approximating circle and the result of 
its rotation by the angle  about a point located at the d 
distance from its center. The center-to-center distance for 
the circles is 2d sin( /2). Therefore, it is identical to the 
central symmetry when rotating around a point located at 
the d0

 = d sin( /2) distance (Fig. 9a). The area of the 
lens-shaped intersection region is 

 
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2 2
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(9) 

where d̂ = d /r and  = 2i /k. Let us find the area of the 
lens-shaped regions using the weighted Jaccard index: 
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The functions are shown in Fig. 9b. They decrease 
over the segment  

2 2 /
0,1/ sin ,

2

k k   
 
  

 

because it is a sum of other decreasing functions. We 
come to the expected conclusion: if the weighted, normal-

ized area of the lens-shaped region is not less than ŝ, then 
the pivot point is located no farther than L–̃1 (ŝ ) from the 
center. Suppose the initial approximation is a point corre-
sponding to the weighted sum (numerator J (k)(A)) of the 
intersections s̄, and a circle containing a part of the figure 
A with the area sin inside and the area sout outside is used 
as an approximating figure. Note that when rotated by 
any angle, a part of the figure with an area of no more 
than sout can be intersected outside the lens-shaped region. 
Therefore, the weighted intersection area inside the lens-
shaped region is at least  

  2

1

1
2 2 .

1

k

out outi
s i k s s s

k

 
  
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    
   

It results in the following estimate for the circle center to 
the pivot point distance: 

 1

2
.outs s

d rL
r

     
 (11) 

а)         

b)  
Fig. 9. a) The lens-shaped intersection region of the circles 

when rotating around the point C by the angle  = /3. 
b) Fraction of the lens-shaped region area of the circle area vs. 

the distance to the pivot point expressed in fractions of the 
radius when rotating by angles in  /3 increments 

Unlike a circle, an ellipse has a degree 2 rotational 
symmetry and lacks any greater degree symmetries. For 
this reason, it does not seem reasonable to apply approx-
imating ellipses to analyze the rotational symmetry with 
degrees greater than 2. 

1.6. Construction of approximating figures 

For our problem, the approximation is considered 
successful if the approximating figure has the smallest 
possible size while covering the original figure as much 
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as possible. It is natural to approximate in the regions 
with a high concentration of the original figure points. An 
obvious approach is to use approximating figures with 
their center at the center of mass of the figure. For ellip-
ses, the approximating figure axes should coincide with 
the principal component axes. Let the figure A have the 
center of mass  

1

AA 

 
p

q p  

and the covariance matrix 
1

( )( )T

AA 

  
p

M p q p q . 

For degree 2 symmetry, we consider concentric ellip-
ses defined as (p– q)T M –1(p – q) = r2. The best intersec-
tion region found is again denoted by s. The "outside" ar-
ea of the figure A vs. the radius of the ellipse relation is 
sout

 (r). We can assume that each ellipse produces a dif-
ferent estimate for the size of the ellipse containing the 
optimal focus: 

1

2
,  where  ,

( )
ˆ ˆ( ) ( )

det
outs s r

d r rL s s
r

 
 

 M
 (12) 

since all the estimates are valid, we can pick the small-
est one: 

0
min ( ).

r
d d r


  (13) 

Fig. 10a shows an example of the functions. A neigh-
borhood constructed by this method is shown in Fig. 10b. 

a)  

b)  
Fig. 10. a) Neighborhood size d (r) and the lower estimate of the 
fraction of the inner area ŝ (r) vs. the size of the approximating 
ellipse. The linear size of the circumscribed ellipse is assumed 

to be 1. b) The ellipse results in the minimum neighborhood size 

It is difficult to analytically calculate the function L–1 
inversed to L (d̂). We proposed to use a table of values or 
an approximated function  

1( ) 1.0133 0.5132 0.49845 .L S S S     

The relative error of approximation does not exceed 1.25 %. 
We proceeded similarly when considering higher-

degree symmetries: 

 1

20

( )
min out

r

s s r
d rL

r





       
. (14) 

Note that using the center of mass and principal com-
ponents to construct the approximating circles and ellip-
ses is an intuitive heuristic. Generally, the search for an 
approximating figure which produces the minimum area 
region containing the optimal focus among all the possi-
ble circles or ellipses is still a problem to be solved. 

2. Experimental search for a region containing  
the central (degree 2) symmetry focus 

We processed 102 images from the Flavia image da-
taset [11] (32 images of plant leaves) and MPEG-7 CE 
Shape-1 Part B [12] (70 images from various categories). 
In all cases, the true position of focus of the rotational 
symmetry obtained by exhaustive search (brute force) 
was inside the estimated region.  

Fig. 11 visualizes the size of the region calculated by 
(1). The region contains the rotational symmetry focus. 
The estimated region is shown in yellow. The true posi-
tion of central symmetry focus marked as red dot. 

Fig. 12 shows the detection of the region which con-
tains the central symmetry focus. The area is inscribed in 
an ellipse constructed for the image. 

 
Fig. 11. Detection of the region containing  

the central symmetry focus 

 
Fig. 12. Detection of the ellipse-shaped region containing  

the central symmetry focus 
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Our key hypothesis was that the size of this region is 
small, so it is possible to apply a complete pixel enu-
meration procedure to find the true focus. To estimate 
the potential reduction of the enumeration space, we 
compared the size of the detected region in pixels with 
the size of the circumscribed circle and the size of a 

smaller circle as proposed in [6]. Its radius was 15 % of 
the radius of the circumscribed circle R,  = 0.15 (see 
the examples in Tab. 1). The efficiency of the region 
representation with an ellipse can be assessed as the ra-
tio of the number of pixels inside the ellipse to the num-
ber of pixels inside the circle. 

Tab. 1. Areas of the regions in pixels vs. the circumcircle and the number of pixels in the image 

Image Ellipse area Circle area 
Circumcircle 

Figure area, pxls Time, ms 
 = 1.0  = 0.15 

 

4469 6509 350116 8497 96732 28 

 

1756 2442 332637 10557 159809 41 

 

9352 19990 406717 17193 103549 32 

 68 554 272638 7845 26831 12 
 

As mentioned above, we processed more than 100 imag-
es from two datasets. The average ratio of the detected circle 
region to the circumcircle is 0.064. The average ratio of the 
detected circle region to the smaller circumcircle is 2.251. 
The same values for the elliptical regions are 0.055 and 
1.997, respectively. The efficiency of using an ellipse in-
stead of circle, estimated as the ratio of the corresponding 
areas for the entire image dataset, was 0.804.  

For highly symmetric images (Jaccard index of the orig-
inal and rotated figures exceeds 0.8), the size of the detected 
region is smaller than the arbitrary value suggested in [6]. 
On average, for all the images processed the value of the ra-
tio of the areas of the found circle and the circle R,  = 0.15 
turned out to be about two. If we consider only the images 
with a Jaccard symmetry index greater than 0.8 (34 out of 
102), the ratio is 0.084 for the ellipse approximations. It 
should be noted that the region detected with the empirical 
rule did not always contain the focus (the focus was in the 
region R,  = 0.15 in 91 out of 102 cases).  

In most cases, the proposed estimate gives an area 
significantly lower than the area with  = 0.15 The excep-
tions are figures which focus of rotational symmetry does 
not enter the area with radius r = R,  = 0.15, see exam-
ples in the Tab. 2. 

3. Experimental search for a region containing  
the rotational (degree >2) symmetry focus 

Tab. 3 shows the results of comparing the proposed 
method and the method based on the Radon transform [8] 
for starfish images taken from 

https://australian.museum/learn/animals/sea-stars/sydney-
seastars/ and http://www.jaxshells.org/starfish.htm da-
taset. The degree of symmetry was equal to the number of 
rays of the starfish. Red dots in the first row of images are 
rotational symmetry focuses for different angles of rota-
tion, red dots in the bottom row are focuses averaged ac-
cording to formula 7. Again, when the approximating cir-
cle covers a significant fraction of the image the size of 
the region detected with the methods is quite small. Being 
more complex, the Radon-based method is able to build 
regions of arbitrary, rather than only circular, shape and 
leaves fewer candidate points, but is much slower. At the 
same time, both methods successfully cope with the task 
and do not exclude the correct focus from consideration. 

Conclusion 

This study proposes an analytical, Jaccard index-
based estimate of the size of a binary image region (circle 
or ellipse) that contains the rotational symmetry focus. 
The region size is the lower estimate of the intersection 
area as the approximating figures and taking into account 
the edge noise of the outline. The approximating figure is 
a circumscribed circle or ellipse. To verify the hypothesis 
that the size of the region is relatively small, we per-
formed a simulation with image datasets. The results 
show that the detected regions always contained the fo-
cus, although sometimes the region size was significant. 
The circle region whose radius was chosen arbitrarily at 
15 % of the circumcircle radius R,  = 0.15, as suggested 
in [6], does not always contain the focus. 
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Tab. 2. Examples of some interesting cases 

Image Scircle
 /S=1 Scircle

 /S=0.15 Sellipse
 /S=1 Sellipse

 /S=0.15 Sellipse
 /Scircle 

The focus is in-
side the area 
with  = 0.15 

Time, ms 

 
0.009 0.343 0.007 0.248 0.724 + 41 

 

0.221 7.929 0.341 12.254 1.545 - 11 

 

0.387 8.596 0.482 10.707 1.246 - 15 

 

0.243 11.059 0.251 11.393 1.030 - 19 

 
0.037 1.257 0.001 0.045 0.036 + 11 

 
0.037 1.387 0.006 0.217 0.158 + 20 

 
0.013 0.586 0.005 0.217 0.372 + 16 

 

0.009 0.343 0.007 0.248 0.724 + 9 

 

0.127 5.626 0.428 18.989 3.375 - 4 

This study proposes an analytical, Jaccard index-
based estimate of the size of a binary image region (circle 
or ellipse) that contains the rotational symmetry focus. 
The region size is the lower estimate of the intersection 
area as the approximating figures and taking into account 
the edge noise of the outline. The approximating figure is 
a circumscribed circle or ellipse. To verify the hypothesis 
that the size of the region is relatively small, we per-
formed a simulation with image datasets. The results 
show that the detected regions always contained the fo-
cus, although sometimes the region size was significant. 
The circle region whose radius was chosen arbitrarily at 
15 % of the circumcircle radius R,  = 0.15, as suggested 
in [6], does not always contain the focus. 

References 

[1] Lei Y, Wong KC. Detection and localization of reflectional 
and rotational symmetry under weak perspective projec-
tion. Pattern Recogn 1999; 32(2): 167-180. 

[2] Yip RKK. Genetic Fourier descriptor for the detection of rota-
tional symmetry. Image Vis Comput 2007; 25: 148-154. 

[3] Yip RK, Lam WC, Tam PK, Leung DN. A Hough trans-
form technique for the detection of rotational symmetry. 
Pattern Recogn Lett 1994; 15(9): 919-928. 

[4] Lladós J, Bunke H, Martí E. Finding rotational symmetries 
by cyclic string matching. Pattern Recogn Lett 1997; 
18(14): 1435-1442. 

[5] Aguilar W, et al. Detection of rotational symmetry in 
curves represented by the slope chain code. Pattern Recogn 
2020; 107: 107421. 

[6] Seredin O, Liakhov D, Kushnir O, Lomov N. Jaccard in-
dex-based detection of order 2 rotational quasi-symmetry 



http://www.computeroptics.ru journal@computeroptics.ru 

956 Computer Optics, 2023, Vol. 47(6)   DOI: 10.18287/2412-6179-CO-1357 

focus for binary images. Pattern Recogn Image Anal 2022; 
32(3): 672-681. 

[7] Jaccard P. Étude comparative de la distribution florale 
dans une portion des Alpes et des Jura. Bull Soc Vaudoise 
Sci Nat 101; 37: 547-579. 

[8] Lomov N, Seredin O, Kushnir O, Liakhov D. Search for 
rotational symmetry of binary images via radon transform 
and fourier analysis. Proc 18th Int Joint Conf on Computer 
Vision, Imaging and Computer Graphics Theory and Ap-
plications (VISAPP) 2023; 4: 280-289. 

[9] Dimitrov D, Knauer C, Kriegel K, Rote G. Bounds on the 
quality of the PCA bounding boxes. Comput Geom 2009; 
42(4): 772-789. DOI: 10.1016/j.comgeo.2008.02.007. 

[10] Shiang S-P, Liu J-S, Chien Y-R. Estimate of minimum 
distance between convex polyhedra based on enclosed 
ellipsoids. IEEE Int Conf on Intelligent Robots and Sys-
tems 2000; 1: 739-744. DOI: 
10.1109/IROS.2000.894692. 

[11] Wu SG, Bao FS, Xu EY, Wang Y-X, Chang Y-F, Xiang 
Q-L. A leaf recognition algorithm for plant classification 
using probabilistic neural network. 2007 IEEE Int Sympo-
sium on Signal Processing and Information Technology 
2007: 11-16. 

[12] Latecki LJ, Lakamper R. Shape similarity measure based 
on correspondence of visual parts. IEEE Trans Pattern 
Anal Mach Intell 2000; 22(10): 1185-1190. 

Tab. 3. Detection of the region containing higher order rotational symmetry focuses for different angles of rotation 

Image Size 555×469 482×463 1095×989 1105×1048 1343×1359 

Result 
(Proposed 
method) 

     
Region area 
(proposed) 

12204 9191 971 33493 117722 

Time, ms 
(proposed) 

38 23 270 191 286 

Result 
(Radon 

transform-
based method) 

     
Region Area 

(Radon) 
2571 1944 344 9782 23749 

Time, ms 
(Radon) 

121 38 169 302 590 
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