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Abstract 

The article considers the conforming identification of the fundamental matrix in the image 
matching problem. The method consists in the division of the initial overdetermined system 
into lesser dimensional subsystems. On these subsystems, a set of solutions is obtained, from 
which a subset of the most conforming solutions is defined. Then, on this subset the resulting 
solution is deduced. Since these subsystems are formed by all possible combinations of rows 
in the initial system, this method demonstrates high accuracy and stability, although it is 
computationally complex. A comparison with the methods of least squares, least absolute de-
viations, and the RANSAC method is drawn.  
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Introduction 

The task of identification is to construct an optimal 
model of an object (system) from the results of observa-
tions of the input and output data. Often the identification 
of an object should be performed using an extremely 
small number of measurements. This may be due to the 
requirement of efficiency, excessive cost or the impossi-
bility to obtain a large number of measurements, etc.  

In this case, the so-called conforming identification 
method (CIM), which does not require a priori assump-
tions about the distribution of measurement errors, can be 
applied. This method was considered in papers [1, 2] dis-
cussing the task of identification of a controlled object. 
An important feature of this method is its robustness to 
gross errors such as failures. In the case of normal obser-
vation errors, the results usually coincide with the ones 
obtained by least square method (LSM) and least absolute 
deviations method (LADM) procedures. 

The high accuracy and reliability of the method in this 
case is provided by using a large number of subsystems, 
formed by various combinations of the rows of the initial 
system. However, because of this, the method has a high 
computational complexity and memory cost. Thus, it be-
comes necessary to develop a parallel algorithm to be 
implemented on a multiprocessor system. 

In paper [3] authors propose a method of conforming 
identification of the fundamental matrix from set of cor-
responding points. In this paper we study the accuracy 
and reliability of the conforming identification method in 
comparison with other commonly used methods. 

1. Formulation of fundamental matrix  
identification problem 

A model of a pinhole camera is used, assuming that 
both images are obtained by cameras with the same ma-
trix of internal parameters: 
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where f is a focal length of cameras, (u0, v0) are coordi-
nates of the main points of the cameras in the coordinate 
systems associated with the cameras.  

Let M be a point in the global coordinate system. The 
coordinate vector of point M in the global coordinate sys-
tem is related to the coordinate vectors of this point m1 
and m2 in the coordinate systems of the first and second 
cameras by the equation [4]: 

1 1=m P M , 

2 2=m P M , 
where the projection matrices are defined as 

[ ]1 1 1 1 ,=P K R t⋮  

[ ]2 2 2 2=P K R t⋮ . 

Here R1, R2  are the 3×3 matrices describing the rota-
tion of the coordinate systems of the first and second 
cameras relative to the global one, and t1 = [t1,x, t1,y, t1,z]T, 
t2 = [t2,x, t2,y, t2,z]T are coordinates of the origin of the glob-
al coordinate system in the coordinate systems of the first 
and second cameras, respectively. 

The matrix R is formed as  
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where 
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The corresponding points on two images are related 
by a fundamental matrix [4]. For points whose coordi-
nates are given by 3×1 - vectors m1 = [u1, v1, 1]T and 
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The equation for calculating the fundamental matrix 
has the form: 
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where [t]× is constructed as 
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For N pairs (N ≥ 8) of corresponding points, assuming 
that F33 = 1, a system of linear equations can be formed to es-
timate the vector c of the desired fundamental matrix values: 
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ξ are errors related with inaccurate calculation of the co-
ordinates of the corresponding points. 

Estimate ̂с  of vector c can be obtained by solving the 
system (2) using the LSM, the LADM, RANSAC [5], or 
conforming identification. The number of observations, 
on which the system (2) is formed, is extremely small, 
therefore, we apply the conforming identification method. 

2. Formulation of conforming identification problem 

We consider the problem of estimating the vector с of 
linear model parameters: 

= + ξy Xc , (3) 

where y and X are N×1-vector and N×M - matrix ob-
served in the experiment, and ξ = [ξ1, ξ2,…, ξN]T is N×1-

vector of unknown errors. The matrix X is composed of 

rows xi, 1,i N= . The task of identification is to calculate 

vector of estimates ĉ  using observations y and X. 
If there is no a priori error information, then the least-

squares method is usually used: 
1

ˆ .T T−
 =  c X X X y  

It is known that LSM estimates are unbiased and effec-
tive under the usual assumptions. However, with a small 
number of observations, these assumptions prove to be un-
reliable because of the insufficient statistical stability of 
probabilistic characteristics. The method of conforming 
identification is based on the assumption that the solutions 
obtained on the subsystems that are most free of noise will 
be closer to each other (i.e., conformed), and the task is to 
determine such a subsystem. Here is a brief description of 
the identification algorithm based on the principle of con-
formity of estimates. 

A certain set of subsystems of small dimension is "ex-
tracted" from the initial system (3): 

, 1,2,..., .k k k k k K= + =y X c ξ  (4) 

Each subsystem (4) contains the rows of the initial 
system (3). Let us further refer to these subsystems as 
lower-level subsystems. In this case, the set of lower-
level subsystems contains subsystems with square M×M-
matrices Xk. By calculating an estimate ˆ

kc  from available 

observations Xk, yk for each subsystem (4), we can obtain 
M
NC  possible estimates on lower-level subsystems. 

Similarly, it is possible to form a set of MNC  higher-

level subsystems of P×N dimension: 

,  1,2,...,l l l l l L= + =y X c ξɶɶɶ , (5) 

Each l th higher-level subsystem (5) contains a set of 
lower-level subsystems (4), on which the corresponding 
set Θ(l) of estimates .. is calculated:  
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To characterize the conformity of sets Θ(l), a function 
of mutual proximity of the estimates is introduced: 
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where , ,
ˆ ˆ,  ,  1, ,  1, ,  1,l i l j l L i K j K= = =c c  are the estimates 

obtained on lower-level subsystems contained in the l th 
higher-level subsystem. Indices i and j in the right side of 
the expression (6) take all possible pairs of values. The set 

Θ(l) of estimates ,
ˆ ,  1, ,  M

l k Pk K K C= =c  with minimum 

value of W(l) is called the most conformed one. 
The hypothesis is that the most conformed subsystem 

is the most noise-free, so the task is to find the index l̂ of 
the higher-level subsystem: 

ˆ( ) min ( ), 1, , P
N

l
W l W l l L L C= = = . 
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At the l̂ th higher-level subsystem, we can either cal-
culate an estimate or a "cloud" of estimates [2]. 

Admittedly, the implementation of the described con-
forming identification algorithm requires large computa-
tional resources. So computing time for identification 
problem with parameters N = 10, M = 5, P = 9 is 0,01 sec-
onds and computing time for identification problem with 
parameters N = 18, M = 9, P = 16 is 793.530322 seconds. 
This is due to the lack of a priori information and a small 
number of observations. That is why it becomes neces-
sary to use an efficient parallel algorithm to decrease the 
computation time. 

3. Parallel algorithm of conforming identification 

In paper [6] a parallel algorithm of conforming identi-
fication was considered. Sets of higher-level subsystems 
were formed on different processors. Subsystems indices 
are formed sequentially because it is necessary to form all 
possible indexes, which leads to the downtime of the pro-
cessors. It is worth noting that the indices of the subsys-
tems of the subsystems of the upper and lower levels can 
be formed once. It will eliminate the downtime of the 
processors in further calculations of the solutions. 

Fig. 1 shows the general block diagram of the proposed 
algorithm and detailed diagrams of the algorithm stages, 
where Fig. 1a shows general block diagram, Fig. 1b demon-
strates data loading and subsystem generation, Fig. 1c shows 
the calculation of the higher-level subsystem with the least 
conformity coefficient for each thread, and Fig. 1d shows 
the selection of the higher-level subsystem with the least 
conformity coefficient and calculation of the solution. 

Because of the need to combine all the results of cal-
culations, the master-slave communication topology and 
MPI are used.  

For the above algorithm, the speedup and efficiency 
characteristics were calculated by solving the identification 
problem with parameters N = 18, M = 9, P = 16. The results 
are shown in Table 1. The calculations were performed on a 
supercomputer “Sergei Korolev”. One node with two pro-
cessors, which have 4 cores each, was used.  

The data in Table 1 shows that constructed parallel 
algorithm is well scalable. Its execution time decreases 
almost linearly proportionally to the number of threads 
used. This algorithm is quite efficient because the calcu-
lation is evenly distributed among the threads. With the 
increase in the dimension of the original system (the 
number N of rows), the execution time of the program is 
significantly increased. 

Table 1. Speedup and efficiency of the parallel algorithm 

Number of threads Execution time (sec.) Speedup Efficiency 

1 793.530322 1.000000 1.000000 
2 399.019544 1.988700 0.994350 

3 264.601322 2.998966 0.999655 
4 202.061476 3.927173 0.981793 
5 170.967832 4.641401 0.928280 
6 145.024123 5.471713 0.911952 

7 139.921319 5.671261 0.810180 
8 103.603291 7.659316 0.957414 

4. Experimental study of accuracy and reliability 

When modeling the initial data, the following parame-
ters are used: 
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a)    b)  

c)    d)  
Fig. 1. Block diagram of the algorithm 

When forming the elements of the matrix R2 in (1), 
the angles α2, β2, γ2 are set in the interval [0°, 8°]. Vector 
t2 is specified as follows: 

2

cos( )

sin( ) ,  [5,6],  [0,360],  z [-1,1].

x

y

z z

ρ ϕ   
   = = ρ ϕ ρ∈ ϕ∈ ∈   
      

t  

With the above mentioned parameters, 100 sets of 
points m1 and m2 are generated. In the formed sets of 
points Gaussian noise with SNR = 70 and mean equal to 
zero is added. Then a random gross error is added. For 
each modeled set of corresponding points, a system of lin-
ear equations is formed. Next, estimatesĉ  of the funda-
mental matrix coefficients are calculated using the LSM, 
the LADM, and the conforming identification method. 
Each element of the resulting matrix F is normalised: 
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Table 2 gives an example of the obtained coefficients 
of fundamental matrices calculated using the LSM, the 
LADM, and the method of conforming identification 
(CIM). 

Table 2. Calculated coefficients of fundamental matrices 

Coefficients LSM LMM CIM 

F11 -0.000000014 -0.0000000109 0.0000000117 

F12 0.0000002480 0.00000023645 0.00000122083 
F13 -0.0002013594 -0.0002574948 -0.0025098495 
F21 -0.0000000731 -0.0000000565 -0.0000008167 

F22 0.00000021004 0.00000021202 0.00000026023 
F23 -0.0037893080 -0.0038348863 -0.0055635209 
F31 -0.0001750568 -0.0000485521 0.00181021209 
F32 0.00287111864 0.00309045186 0.00477540238 

F33 0.99998935123 0.99998783697 0.99996833277 

To determine the reliability of methods for each sys-
tem, a set of 500 corresponding points m1 and m2 is gen-
erated. For each pair of corresponding points, distances to 

epipolar lines , =1,500id i  are calculated: 

1 2 3

2 2
1 2

,i i i
i

i i

l u l v l
d

l l

+ +
=
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where (l i1, l i2, l i3) are calculated as follows: 

= ⋅l u F , 

where l  = [l i1, l i2, l i3]T, ' ', ,1
T

i iu v =  u . As a measure of 

the accuracy of the methods, values , =1,100kd k  are 

used. They are calculated by the formula: 
1
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K
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d d
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where dki is the distance from i th test point to the epipolar 
line for kth set of points m1 and m2, K = 500.  

Table 3 shows the maximum and minimum values of 
dk for each method. 

Table 3. Values of dk 

 LSM LADM CIM 

Maximum value 384.92 476.20 339.90 
Minimum value 2.36 2.36 1.02 

For a set of values dk calculated by formula (7), histo-
grams are formed. Тhe interval of possible values is di-

vided into 20 intervals ∆dl, 1,20l =  and for each interval, 

the probabilities ̂ lp  for the values of the criterion dk∈∆dl 

are determined: 

1

1
ˆ ,

m

l l
l

p N
N =

= ∑  

where N is total number of generated points, Nl is the 
number of points included in the lth interval of the histo-
gram, m is the number of intervals of the histogram. The 
histograms and the estimated distribution function of the 
accuracy dk for each method are shown in Fig. 2. 

a)  

b)  
Fig. 2. Histograms of dk (a); Reliability graphs of accuracy (b) 

The graphs in Fig. 2 show that the conforming identi-
fication method has higher accuracy and reliability in 
comparison with the LSM and LADM. In the problem of 
fundamental matrix identification, the least-squares solu-
tion will give a more accurate solution than the LADM. 

The study of accuracy and reliability of the CIM and 
RANSAC methods was also carried out. Fig. 3 shows a 
histogram of distances and distribution function of dk . for 
both methods. 

The graphs in Fig. 3 demonstrate that the CIM slight-
ly exceeds the RANSAC method in accuracy and reliabil-
ity. Also, unlike RANSAC method, the conforming iden-
tification method does not require setting the threshold 
value and the number of iterations. 

The algorithm was applied to real images form the set 
“Temple of the Diskouroi”. To find the feature points in 
the images the algorithm SURF [7] from OpenCV library 
was used. Figure 4 shows the selected images and the ob-
tained corresponding points.  

Using the selected feature points, we obtain a system 
of linear equations to which an extra gross error was add-
ed, and the fundamental matrix is further calculated. Sim-
ilarly, for the generated test points the distance di, and 
then parameter d were calculated. The conformity coeffi-
cients for the CIM and RANSAC equal 8803,506 and 
12297,313, respectively. 

Conclusion 

Experimental studies demonstrate that for the problem 
of the fundamental matrix identification the method of 
conforming identification ensures a more accurate solu-
tion, and has a higher reliability as compared to the LSM 
and the LADM. The conforming identification method 
slightly exceeds the RANSAC method in terms of accu-
racy and reliability. Also, the CIM does not require set-
ting the threshold value and the number of iterations. 
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а)    b)  
Fig. 3. Histograms of dk (a); Reliability graphs of accuracy (b) 

a)    b)    c)   
Fig. 4. Test images (a, b); selected feature points (c) 
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