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Abstract

This article focuses on aerial vehicle detectiod srtognition by a wide field of view monoc-
ular vision system that can be installed on UAVaenfanned aerial vehicles). The objects are
mostly observed on the background of clouds unelgular daylight conditions. The main idea is
to create a multi-step approach based on a preiyidetection, regions of interest (ROI) selec-
tion, contour segmentation, object matching andlleation. The described algorithm is able to
detect small targets, but unlike many other apgreads designed to work with large-scale objects
as well. The suggested algorithm is also intenda@t¢ognize and track the aerial vehicles of spe-
cific kind using a set of reference objects defibgdheir 3D models. For that purpose a computa-
tionally efficient contour descriptor for the moslelnd the test objects is calculated. An experi-
mental research on real video sequences is perforite video database contains different types
of aerial vehicles: airplanes, helicopters, and $AVhe proposed approach shows good accuracy
in all case studies and can be implemented in axdbgsion systems.

Keywords:aerial vehicles, object detection, contour desorjpecognition

Citation: Muraviev VS, Smirnov SA, Strotov VV. Aerial velés detection and recognition for
UAV vision systems. Computer Optics 2017; 41(45-581. DOI: 10.18287/2412-6179-2017-41-4-

545-551.

Acknowledgementsthis publication has been prepared as a part @arel carried out by
Ryazan State Radio Engineering University undesthte contract 2.7064.2017/BCh.

Introduction

The unmanned aerial vehicles (UAVs) went through
intensive development period in the last decademamy
applications they proved their reason for existeivmwva-
days the appearance of large numbers of UAVs raise
problems such as autonomous navigation, early otgec-
tion and recognition, 3D scene reconstruction, isiof
avoidance. It should be noted, that previouslytaidasks
were solved by radar-based systems. They are legliaix,
unfortunately, can't be installed on the small @erehicles
because of high weight, size and energy consum@@imthe
attention of researches is attracted by high résolimage
sensors. This paper is devoted to aerial vehicksction
and classification by wide field of view monoculésion
system. This is essential for collision avoidaragtono-
mous drone swarm deployment, airspace patrol amitono
ing, in security applications.

A typical image of an aircraft at a range of sele
kilometers is only a few pixels in diameter. A paftthe
challenge is detecting such small targets in loynai to
background ratio. On the over hand, objects size- ¢
stantly grows as it approaches. Large object |lomks
trast but have too much detail that can lead ther p
quality of object parameter estimation. The exanydle
observed types of aerial vehicles is shown in Fig.

Well-known object detection algorithms are not alsvg
invariant to the scale transform and are used pifimiar
small target detection [2, 3]. However, some reddyi re-
cent research efforts look promising [4, 5]. Thieraktive
approaches based on algorithm switching alreadyedior
ground object detection, for example [6].

However, the development of more reliable alg
rithm for early object detection and confident rgeie
tion under different observation conditions is Iséh

Traditionally, some different approaches are used f

afecognition purposes, including hidden Markov megdel
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0o

feature points, tangent/turning functions, curvatomaps,
shock graphs, Fourier descriptors, etc. [4].
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Fig. 1. Different types of observed aerial vehicles

They have their benefits and drawbacks, regarding
computational complexity, precision capabilitiespie-
mentation issues, robustness and scalability. Gttge-
based approaches include Chamfer distance basdd met
ods for recognizing objects through smaller shapg-f
ments [7]. Complex algorithms based on machinenlear
ing [8] are developed actively, but they still haligh
computational costs.

Often aerial vehicles have homogenous brightnesiseon
image and its shape information is more relevantis pa-
per, a relatively simple shape descriptor is ukeésl.compu-

O-tationally efficient and suited for onboard systems

important problem.

This article focuses on aerial vehicles (airplamesi-
copters, UAVs) detection and recognition mostly i
cloudy background conditions. The main idea israate
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a multi-step approach based on a preliminary detect
regions of interest (ROI) selection, object contseg-
mentation, contour descriptor calculation, objectteh-
ing, and recognition.

In the next section object, detection algorithmiés
scribed in detail. Then contour descriptor evahrgtiob-
ject matching and recognition are discussed. Wegnmte
some experimental results for proposed approach
tained on natural video sequences.

1. Object detection

Preliminary detectionThe algorithm, that is used t
detect objects at preliminary step, should satigfy re-
quirements. It should be computational efficiend arork
well in cloudy and noisy environment. It can beuased,
that objects are more contrast than the underlipiack-
ground. Neighboring pixels usually have similarghit
ness values and background have low spatial fralgesr]
in Fourier domain. In that case, objects with sosse
sumptions can be describes as blobs. Spatialsfikee
typically used for blob detection to increase SN ¢0
get better results.

At first, the background must be estimated. Wheeef
an observed imadé§, j) passes through the spatial filter wi
big size maskh,. Simultaneoushi(i,]) is smoothed with
maskh; of smaller size to average object brightnessni-o
prove performance, box filters are used. They uzskat;
and hy, which have dimensions (&:+1)x(2u+1) and
(200+1)x(20p+1), gr < qp respectively:

h(mn=1/(2q+1f , mr-gq, g
0,m,n=-q,(q;
1/((2q2 +1f - (9, + 1)2) ,otherwise

h,(mn= 0

After that the background estimation is subtract
from filtered with mask; image:

d@i, j))=16.j)*h, -1¢.j)h,. 2)
Difference imaged(i,j) contains objects and remait]
ing clutter with nearly gaussian zero mean spaliisti-
bution. It can be concluded because of the largaben
of pixels in the image and application of a centirait
theorem. Taking into account the nature of therifigt

tion the thresholding procedure can be used tmkjetct
binary masko(i, j):

bUJ)z{L|dGJj>ko;

0, otherwise,
wherek is a threshold coefficient and— standard devia
tion of the difference image.

3)

However, application of the blob detection procedyr

in practice faces with a number of problems. Disg
vantages of the approach are explained by theitpcHi
spatial processing techniques. It is clear thatsike of
the filter mask depends on the object size in thage.
Large object is often fragmented, and it is impdsab
correctly determine its shape. Besides, atmosphantici-

cause false detections. Next processing steps are p
formed to archive scale invariance, reject falsect®ns,
and refine object shape.

ROI selection.To archive invariance to scale trans-
form gaussian image pyramid is created, and blabcde
tion algorithm described above is performed. Biniany
ages are formed at each scale of the pyramidr Filéesks

olkizes are fixed, but coefficieft slightly increases with
image detail degradation. For each pyramid levehtyi
image is formed, and list of segments is createdni&nt
analysis at different scales is a part of the atlgor
which allows selection of regions of interest.

The analysis starts from coarse image resolutiah an
goes to more detailed levels. Simple morphologagegr-
ations are involved to reduce segment fragmentaiion
low resolutions. Bounding boxes for each segmeat ar
expanded on some value depending on initial sibenT
intersections between bounding boxes are seardding
different scales. Intersected regions must be esuand
excluded from the list. As a rule, large objectsha im-
age are more fragmented on detailed scale levédis T
property is used to specify large object locatiérample
D of binary mask of the test object on different lewef the
h pyramid is shown in Fig. 2.

D

=1

=~

Fig. 2. Image and binary mask at three levels efgiramid.

Black rectangle corresponds to the ROI and is dsedontour
segmentation
Thus, bounding boxes that are found on coarseuesol

tion and have more intersections on higher resmistare
probably related to objects and are treated as .Ris
size of all ROIs is transformed to one resoluticals.
Remaining small segments found on original image ar
small targets. They can be described by its positize
and average brightness. These characteristicssacefar
matching based on minimization of relative differes of
object properties. Such small object can be tracketits
elocity can help to increase recognition accutats.

In opposite, large objects on binary image can look

deformed. The segment centroid is often shifted, that

leads to significant errors in recognition. To &se bet-

ter results, object shape is restored at next lsyepro-

cessing ROIs with contour segmentation algorithbusd
ude illumination changes.

Y

lence and background clutter such as contrast slg
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Contour segmentatiorAt this step, the more compli
cated segmentation procedure is performed in ed&sh
to estimate object contour. We choose active conf
model as a powerful and flexible approach that ban
used to precisely segment object boundary. More
portant that this approach grants that contour Wél
closed and won't contain gaps.

The model is based on the Mumford-Shah functio
minimization problem [9]. Let's assume for simptici
that the images are continuous. The general fomthi®
Mumford—Shah energy functional for sensed imkigey)
can be written as

E"(r,C) = ” (1%, y) = r(x y))” dxdy+
(x,y)dROI (4)
+ |Or (x, y)|* dxdy+v Oength{ O,

(x,y)JRONC

where m and v are positive constams, y) — segmented

flat. This effect is caused k)(¢) due tod(x,y) smooth-

Ring. The iterative search stops when the numb@oufts

Ouwvhere level set function is close to zero ceasesuty no-
ticeably [9].

m- This method can deal with the detection of objects
whose boundaries are dimmed or not necessarilyatbfi
by gradient. It does not require image filteringl aan ef-

naficiently process noisy images. Therefore, the broenda-
ries are preserved and could be accurately detegtit-
tionally, it can automatically detect interior conts with
the choice of Dirac function approximation [10].

However, Chan-Vese model also has some draw-
backs: the unsuccessful segmentation of imagessigth
nificant intensity inhomogeneity, the sensitivitythe ini-
tial contour placement, and time-consuming itegativ
solving procedure. In this work images are segnteate
ly in areas determined by ROIls, and are centeredbsn
jects in most cases. The influence of an imagenmiye-

image,C — object boundary curve. It becomes a difficfiitNeity on segmentation results is noticeable faydescale

problem to findC sincer(x, y) is also an unknown func
tion in 2D coordinate space. Expression can belgiegp
if r(x,y) is a piecewise constant function that takes
value r; inside C andro outsideC. In that case energy
functional (4) is reformulated as follows:

E"(,,n,C)=x, [ (166y)=1) dkay+
(x,y)Joutsid¢ Q
]

(1(x, y) = 1,))” dx dy+v Cength( O.
(x,y)Jinsidg Q

Expression (5) describes a Chan-Vese active con
model [9, 10], where first term is the energy thatre-
sponds to expansion force; the second is the enbegy
tends to compress the contour. The problem isntb the
boundary of the object at which equilibrium is read
between two forces. The unknown cu@és replaced by
the level set functio(x, y), considering thad(x,y) >0 if
the point &,y) is insideC, ¢(x,y) <0 if (x,y) is outsideC,
and ¢(x,y) =0 if (x,y) is onC. Finally the minimization
problem is solved by taking the Euler—Lagrange eq
tions and updating the level set functi¢p(x,y) by the
gradient descent method:

(5)
+A,

W = 5(B)(V K@)~ (1(x, y) ~ 1,)? +

+1 (%, )~ 1)),
wherer; andro are average brightness values of objg
and background respectively(¢) — approximation of
Dirac delta functionK(¢) — curvature of the curve. Irj

transition from continuousx(y) to discrete i(j) coordi-
nate values equation (6) is transformed to

O 1) = 0,00 )+
+3(0) (v K, () = (10.1) =ro))* + €1 ) 6))°).

At eachn-th iteration,(x, y) is reinitialized to be the
signed distance function to its zero level setsTgrioce-

(6)

()

objects but can be significantly reduced by image
downsampling in the gaussian pyramid. Thus, thenmai
h&rawbacks of the approach can be overcome.
Next subsection provides a description of object
recognition step of the algorithm.

2. Contour descriptor calculation

The contour descriptor is the number vector thag¢is
lates to the specified object contour. It is used de-
creasing of the amount of information describing tip-
ject contour. Also, the contours descriptor allomgeas-

Olfig the speed of the contour matching [11].

The proposed descriptor can be calculated using the
object binary imag® or a contourC. In the first case af-
ter the image binarization we can extract exteimaige
contour. Points of the contour are translated mbar
coordinate frame with the frame center in the dbpen-
troid. Obtained vector of polar coordinates is diticed
and subjected to the median filter.

The result descriptor units can be calculated usieg

uafollowing equation:

where i =1,N, — the number of the current descriptor

unit; Np — the total number of the descriptor units;
actl(P1, P2) — Euclidian distance betwe&h andPy; Peenter—

the position of the object centroiB(a, Aa) — any object

or object contour point situated in sector of tirele that

is limited by theatAaangles (the circle is centered in

peente): Fred...} — the symbolic definition of the median

filtering operation.

As the object contour is a close curve, it gensritte se-
ries of the descriptors that are shifted relative tm another
depending of the starting angle. The descriptoh wlite
maximalD(1) unit is used as an object descriptor.

Steps of calculating contour descriptors are ithtsd
in the Fig. 3.

2 n

D(i)=F__ <max d (P®™™" P —
(i) med{ [ P (ND N,

dure prevents the level set function from beconting
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3. Object matching

Small targets are matched by minimizing relativie di
ferences in average brightness, size position fgead
candidates found in new frame. Contour coordinates
very valuable for tracking and recognition purpofas
larger objects. However, information about contooior-
dinates is excessive and values themselves arnevaoi-
ant to geometrical transformations. Therefore nrete-
vant contour descriptors are used.

Object matching is performed by minimizing the cri-
terion function:

Fan (i) = gnﬂig[NZD(Doba ~m)=D,( ))]

i=1

(9)

descript - = i

escriplor M ={m:m=1N}, j=1N,

calculation
(ared

where Dos?; — object contour descriptor found in the
peenter previous frame,D,, j =0,N is the descriptor of object

candidateN — number of objects in the current frame,
— is the value of circular shift of a descriptanage rota-
tion results in circular shifts of the contour dgstor and
is taken into consideration in (9). Thus, matchingcess
is invariant to object rotation, scale and shiftinivhum

of Ferit(j) for all j determines the most similar object.

%f)mnce () 4. Object recognition
400 The proposed object recognition algorithm congidts
350 two stages. The first stage is reference objecibdae
300 preparation or learning. At this stage the refezeabect
1 descriptors are calculated using 3D object modéile.ref-
2307 erence database includes a set of descriptorslaiaidfor
200 a number of different object poses with differente an-
150 gles combinations. We suggest using the geosphigi-p
100 ple to distribute object poses on the sphere umifor
1 Since then stage includes a lot of complicatedadjuer (as

307 3D model rendering), it produced preliminary [12].

O T The second stage of the algorithm is object recogni
0 50 100 D,-rjj,‘,-’o,, (dé?ﬁ’e,e unz,-fs% tion. It also is based on description of extract®age
Distance (pixels) coptour an_d similar to _the obj_ect matching alganith
4507 This stage is performed in real time on the board.
400 1 The most probable pose is estimated as a result of
350 - matching the contour descriptor of query image with
300 training descriptors. Descriptor matching is parfed by
. calculating the criterion function:
2504 N
] _ [ _ 2
200 fo(§) = mln[Z(Do(l ~s) - D, (i) }
1501 S L= (10)
100- S={s: =1, I\;},
301 where Do is the query image descriptobjis the de-
0" [ TS A A scriptor of current training image, amds the value of
d) Direction (discrete units) CII‘CU|8..I‘ Sh.lf'[ Qf descnptor. ) o )
Fig. 3. Steps of contour descriptor calculation: ¢he input This criterion function provides rotation invarignof
query image of aircraft, b — binary image with théracted the descriptor. Index of tralnlng descnp_tor copads to
contour and the example of the sector matchededitst a geosphere point. Therefore it determines Eulglesio
descriptor unit, ¢ — binary image translated in @otoordinate | andp. Lets to be the shift value that gives the minimum
frame, d — external contour descriptor value to the expression in square brackets in (11):
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Np >

$(J) =argmi Dy (i =) = Dy (i) }

<IS ,221:( 0 ! ) (1)
S={s: s1 I\;},
Hence the value of angjeis calculated by the formula:
215,

= . 12
y N, (12)

As a result of calculating criterion function (1for
every training descriptor we get vector of valuésrie-
rion function

M =(f, (D15 =1N,).

The measure of the similarity between capturedatb]
and thek-th reference object is vali®. It can be defined
as the minimal distance between sets of the olgjeet
scriptors as:

RK = mjin( fcril ( J))l ] = 1:Ng .

The recognition is processed by finding the leadt \
ue of the:

match=argmin(R), k= 1, K,
k

(13)

(14)

(15)

wherek — index of the most similar reference objéct-
the cardinality of the reference object set.

As the suggested algorithm is based on image con
description, we meet the ambiguity problem. It repp
when calculated descriptor corresponds to more timen
orientation. For instance, topside and undersiégvsiof
an airplane will provide equal object contours &etice
descriptors. This problem must be taken in the aetcm
case of solving orientation estimation task, businot
important in case of recognition task solving.

Another algorithm problem is related to the defin
types of the object because of some image petigiarihe
images of the helicopters often do not includeptapeller.
It happens, for example, then the distance if fiar the light
source is situated behind the observer. In this ttasdiffer-
ence between the object contour descriptor antefaeence
descriptors is inaccessibly high (Fig.-4).

We propose to use two different models for theresfee
descriptor generation. The first model of the logter in-
cludes the propeller, the others does not. The pheaimag-
es of the aircraft obtained using this approachthadela-
tive contour descriptors are presented on Fig. 4.

5. Hardware implementation

Since the developed algorithm will be used in g
board vision systems, it must fit the system stmectThe
target systems consist of DSP or CPU as a contiol
and a number of FPGAs as computing units. FPGAs
used for performing the most of “heavy” operaticush
as spatial and temporal image filtering, geometn
spectral transformations, template matching andstir
olding, binary image marking. The DSP/CPU is usad
performing unique operations with small amount afagl

d)

Distance (pixels
4507 d )

400
3501
3007
250
200 ]
150 ]
100 ]
50 ]

0

tou ————— — :
100 150 200 250
Direction (discrete units)

e)

Distance (pixels
450 7 @ )

400 1
3507
300 1
250 ]
200
150 ]
1007
50 ]
0

11

50 100 150 200 250
Direction (discrete units)
Fig. 4. — Steps of contour descriptor calculation:
a — the render image of the helicopter with propelle
b — the render image of the helicopter without ptlgpe
¢ — the binary image of the helicopter with propelle
d — the binary image of the helicopter without pitgre
e — the contour descriptor of the helicopter witbpeller,

_ f—the contour descriptor of the helicopter withpubpeller

f)

n

u described system structure. The object recognigo-

learning stage of this algorithm should be perfaino¢
external PC. It includes such specific operatioastte
3D object rendering. Also, the learning stage tasime
f restrictions. In contrast, the second stage of gseg al-

based vision system shows the most performancease c

FPGA dispatching and internal control.
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of pipelined processing. Therefore, we suggest that
algorithms are suitable for Xilinx Virtex 5 of high
FPGA based vision systems [12].

6. Experimental research

The first goal of research is to determine theitgbdf
algorithm to localize objects at the distance ofesal
kilometers. Video database contained 12 graysddksov
sequences with 7 different types of aircraft, thsgees of
UAVs and two helicopters. Object observed on cloy
environment and in clear sky conditions. These sagges
were obtained from single TV or IR camera with aevi
field of view. The size of objects varied from ab&x3
pixels to 200x200 and even higher. Confident detact
of objects in observed images affects the qualitsigo-
rithm. The true positive rati®t and false negative ratig
Pf are measured for fixed detection algorithm paranset
Reference object position and size are determinech
video frame by visual inspection. Additionally th&and-
ard deviation of object coordinate: and sizeogs meas-
urement error are estimated.

To get more relevant results is divided on reference
size and expressed in percent. The results are atired
in Table 1. The algorithm is less reliable in déterhel-
icopters because of rotary wings that are not advdiy-
tinguishable. In some cases the shape of the objeies
very rapidly due to the changes of the angle ofwvyid
which also causes object misses.

Table 1. Object detection results grouped by type

Type of ; o
aerial vehicles Pd Pt Os, pixel Os, %
Airplane 0.95 0.06 3.6 5.4
Helicopter 0.89 0.12 6.3 105
UAV 0.93 0.08 2.4 3.2

There are a lot of algorithms developed for aestal
ject detection. In [13] authors adapted Viola-Joakm®-
rithm for aircraft detection in video sequencese Piob-
ability of true detection ranged from 843to 89.1%,
depending on background conditions. The approaeh
veloped at Carnegie Mellon University [14] is foedson
detection of small size unmanned aerial vehicles dis-
tance of about 3 miles from the image sensor. Tge- a|

In the work [16] the authors propose a mixed apgroa
They use three types of indicators and a neuratarkt
The result true positive ratio is betweerf82and 94%. In
the work [17] the Markov random field based clasatb-
ry is used. The result true positive ratio is betw&8%
and 9%%. In the work [18] the authors propose recognition
of the military airplanes using wavelet-based dpsms.
The result true positive ratio is about%6

The experiments were carried out on the same Hatura

d)fmage sequences that were used for the objecttigtec
algorithm examination. The minimal aerial objecear
was 500 pixels. The maximal aerial object area las
than 19% of the image area.

The reference object base includes 17 objectsobhe
jects were defined by the 3D models. The sets ef¢i-
erence images were rendered for every model. Tdierfa
3 geosphere point distribution was used (92 paifthg
light source was situated in front of the objedteTex-
amples of the object recognition are presentedigng-

c
Fig. 5. The exar%ple of the object recognition he-dbject
source image, b — the object binary image with ewer
contour, ¢ — the most similar reference object imag
The quality of the object recognition was estimated
gdsing the true positive recognition ratio metri€his val-
ue was averaged on the entry test video set. Tudtseof
the experiments are shown in the Table 2.

Table 2. Object recognition results

rithm provides detection probability of more tha®?%8 . True
with a false negative ratio not exceedingp5but the al-[ Ne  Object Estimated positive
. . - . - object class ;
gorithm is not developed for large-sized objecedgon. ratio, %
A closer analogue of the developed algorithm isudtim | 1 Airbus 380 «Airplane» 96,1
step approach described in [15], which providegatain | 2 ~ LockheedC-130 «Airplane» 92,9
and classification of aerial objects. The algoritemon- | 3 Mi-172 «Helicopter» 98,3
. . o . 4 MQ9 «UAV» 86,9
strated high detection quality; however, test viden 5 MO1 UAV» 808
guences contained only aircraft on relatively loontrast 6 Mi-8 «Helicopter» sé,z
background. The effectiveness of the developed-algo ; IL 76 (IR) «Airplane» 100
rithm is comparable with analogs, and in some cidsses| g Lockheed C-5 «Airplane» 100
possible to achieve better results. 9 Cessna 172 «Airplane» 95,6
The second goal of the experimental research waps tdl0  Sukhoy SJ 100 «Airplane» 100
study the performance and accuracy of the proposed| 11  Airbus 380 «Airplane» 87,2
age recognition algorithm in comparison with the_12__ MQ9 «UAV>» 89,2
known works. T Average 92,8
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Conclusion

The proposed algorithms are suited for object tletec
and recognition of aerial vehicles observed ondydoack-
ground under regular daylight conditions. Experitaesmow
that objects can be detected with good qualithetlistance
of several kilometers. Accuracy of matching andgsaition
upon the average exceeds¥®®ut depends on object typ
and orientation in space. The proposed algorithfocgsed
on computational complexity reduction, and can &edun
airborne vision system installed on UAV. In futaddition-
al research work will be carried out to implemé algo-
rithm in actual vision systems.
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