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Abstract 

In this paper, an automatic algorithm aimed at volumetric segmentation of acute ischemic 
stroke lesion in non-contrast computed tomography brain 3D images is proposed. Our deep-
learning approach is based on the popular 3D U-Net convolutional neural network architecture, 
which was modified by adding the squeeze-and-excitation blocks and residual connections. Robust 
pre-processing methods were implemented to improve the segmentation accuracy. Moreover, a 
special patches sampling strategy was used to address the large size of medical images and class 
imbalance and to stabilize neural network training. All experiments were performed using five-
fold cross-validation on the dataset containing non-contrast computed tomography volumetric 
brain scans of 81 patients diagnosed with acute ischemic stroke. Two radiology experts manually 
segmented images independently and then verified the labeling results for inconsistencies. The 
quantitative results of the proposed algorithm and obtained segmentation were measured by the 
Dice similarity coefficient, sensitivity, specificity and precision metrics. The suggested pipeline 
provides a Dice improvement of 12.0 %, sensitivity of 10.2 % and precision 10.0 % over the 
baseline and achieves an average Dice of 62.8  3.3 %, sensitivity of 69.9  3.9 %, specificity of 
99.7  0.2 % and precision of 61.9  3.6 %, showing promising segmentation results. 
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Introduction 

Acute cerebral circulation disorder or stroke is a 
disease with high rates of morbidity and mortality 
worldwide. According to the American Heart 
Association, the most common type of stroke is ischemic 
[1]. Early diagnosis of stroke is crucial for treatment 
choice [2, 3], because tissue changes in the ischemic 
penumbra may be reversible, especially in the early 
stages [4, 5]. The choice of diagnostic methods in each 
specific case strongly depends not only on its 
applicability (availability, contraindications, patient’s 
condition, etc.), but also on the time of symptoms onset 
[6]. Any delay in medical care increases the risk of severe 
consequences and death. 

Neuroimaging is fundamental to most modern 
methods of differential diagnosis of acute stroke [5, 7 –
 12]. For some imaging procedures, contrast injection is 
required, which is related to the risk of complications and 
a number of contraindications. The analysis of Computed 
Tomography (CT) and Magnetic Resonance Imaging 
(MRI) scans is an integral part of the examination 
guidelines for patients with signs and symptoms of acute 
stroke [7 – 9]. 

CT is the most common diagnostic tool for acute 
ischemic stroke (AIS) due to its availability (a large 
number of screening centers, low cost, no 
contraindications and low body burden) and short 
screening duration [7, 8, 13]. Non-contrast CT (NCCT) 
was first used in the evaluation of AIS patients in 1995 to 
detect intracranial hemorrhage (hemorrhagic stroke) and 
select a treatment strategy at an early time window 
(within 3 hours of symptoms onset) [15, 16] and proved 
to be efficient [13, 14, 17]. When diagnosing stroke, 
NCCT demonstrates relatively high specificity and low 
sensitivity, however, it allows detecting blood clots in 
cerebral vessels and intracranial hemorrhage (hemorrhagic 
stroke) which are absolute contraindications for some 
strategies of AIS treatment [9, 17]. 

Interpretation of NCCT scans is associated with 
certain difficulties, since early AIS changes look like 
areas of slightly reduced density, which the human eye 
due to various factors cannot always distinguish from the 
normal tissues [3, 7, 19]. In addition, images often show 
artefacts (caused by patient movements or imaging 
camera) that may look like strokes [8]. Therefore, 
developing of automated procedures for localization and 
assessment of AIS tissues volume based on NCCT scans 
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[19 – 26] (including the procedures based on 
convolutional neural networks (CNNs) [19 – 22]) is an 
urgent task. Randomized controlled trials [19, 27 – 29] 
have shown that CNN-based methods are comparable to 
radiologists in terms of sensitivity, specificity, overall 
accuracy, AUC, ROC, etc. It allows using CNNs as 
auxiliary tool in clinical practice. In addition, automated 
processing based on 3D CNNs allows volumetric analysis 
taking into account the spatial context and the rapid 
detection of small ischemic foci. 

Over recent years in the medical image segmentation 
task CNNs have achieved state-of-the-art results [30, 31]. 
It is due to the convolution operation and its weights 
capable of learning complicated structures and patterns at 
multiple scales in the data. The U-shaped encoder-
decoder CNN architecture 2D U-Net [32] has a wide 
application [33 – 35]. In [33], a self-adapting framework 
where 2D U-Net is adopted to segment various organs is 
proposed. For the analysis of volumetric images, 
3D CNNs were introduced [36 – 38]. 3D U-Net [36] 
shows better performance in comparison with 2D U-Net. 
In [39], a slightly modified 3D U-Net is utilized for brain 
tumor segmentation in MRI scans. In [40] DeepMedic 
CNN architecture [38] is used for stroke lesions 
segmentation and post-processing techniques are 
investigated. In [33], cascaded 3D U-Net is proposed, 
which overcomes the disadvantage of 3D U-Net for 
datasets with large image sizes, but it requires training 
two neural networks. U-Net is often improved for a 
specific task using various architecture choices (e. g., 
Squeeze-and-Excitation blocks [34, 41 – 43], attention 
mechanisms, and computer vision transformers [44]). 

In this work, we present a neural network algorithm 
for the volumetric segmentation of acute ischemic stroke 
lesions on NCCT brain images. We use a 3D CNN based 
on 3D U-Net architecture [36], which we modify with 
residual connections and relatively new Squeeze-and-
Excitation blocks [41]. To achieve better results, we 
implement robust pre-processing techniques, a particular 
patch extraction strategy, and a weighted loss function, 
which are aimed at mitigating the class imbalance. We 
perform five-fold cross-validation and compare the 
results of experiments by measuring Dice, sensitivity, 
specificity, and precision metrics. 

In the rest of the paper, we describe the used dataset 
and the method (including data pre-processing techniques 
and patches sampling strategy), the neural network 
architecture, and training and testing procedures. In the 
end, we summarize our work and discuss future plans. 

1. Materials 

The dataset used for our study contains volumetric 
non-contrast CT head scans of 81 patients diagnosed with 
acute ischemic stroke. The CT images were made by the 
Philips Ingenuity CT scanner and stored in medical 
DICOM format. The data were acquired from the 
International Tomography Center SB RAS. All 

volumetric images have the same resolution of 512×512, 
but a different number of slices varying from 306 to 505, 
depending on the patient. For all images, slice thickness 
and spacing between slices are 1 and 0.5 mm, 
respectively. Also, the DICOM attribute pixel spacing, 
that is, the physical distance in mm between pixel centers, 
ranges from 0.38 to 0.5 for different volumes. For each 
volumetric image, corresponding manual segmentation is 
available. All segmentations were performed by two 
radiology experts (specialists in magnetic resonance 
imaging and X-ray computed tomography with 9 – 13 
years experience, PhD in Radiology and Radiation 
Therapy) using 3D Slicer [45]. It is worth mentioning that 
the number of voxels corresponding to the area affected 
by acute ischemic stroke is 0.8 % of the total number of 
voxels in our dataset, that is, the data under study is 
highly imbalanced. 

2. Methods 
2.1. Data pre-processing 

One crucial step in all deep-learning approaches is 
data pre-processing, which ensures data consistency. 
Training CNN directly on data without pre-processing 
leads to poor performance, as will be shown below. First, 
the intensities of CT images were thresholded between 0 
and 80 Hounsfield units [46]. This transformation 
eliminates most of the artifacts and high-intensity tissues 
and remains visible such important parts of the brain as 
soft tissue, white matter, and gray matter. Second, the 
skull and coil were removed on each slice, leaving only 
the brain area on the CT image. This transformation was 
performed using connected component analysis. In 
particular, extraction of the largest connected component, 
then assigning zero values to pixels with the highest 
intensity, which correspond to the region of the skull, and 
re-extraction of the largest connected component. Third, 
each volume was normalized. We apply min-max 
normalization: 

min

max min

,
X X

X
X X





   

where Xmin and Xmax are the minimum and the maximum 
intensity values (X ) of 3D image, respectively. Such a 
normalization rescales values to [0, 1]. We also 
conducted an experiment applying standardization before 
min-max normalization: 

ˆ ,
X

X
s


  

where  is the mean and s is the standard deviation of the 
brain region. Standardization was applied to each 
volumetric CT image of each patient independently. Also, 
the non-brain region was set to 0. Such a technique gives 
comparative intensity values in the brain area while 
invariant to the size of the background part. Fourth, the 
volumes were cropped to the non-zero region to dispose 
of a large uninformative background area. An example of 
a pre-processed image is shown in Fig. 1. 
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a)   b)  
Fig. 1. (a) CT image after the first pre-processing step, (b) after 

preprocessing 

2.2. Patch-based approach 

The main difficulty related to 3D medical images is 
their large size, while computing resources are always 
limited. For example, a CT scan from our dataset has on 
average 512×512×405 = 106168320 voxels (1.04 GB of 
memory for 32-bit voxels), where 405 is the average 
number of slices for a patient. It is worth noting that if the 
dataset is anisotropic, that is, the resolution of different 
axes of an image is not the same, resizing methods are 
not advisable. Different interpolation techniques can 
deform the physical object and remove small details. 

An optimal solution is to extract small parts, so-called 
patches, of 3D images and use them as input to a neural 
network. We use the uniform sampler, which extracts 
patches randomly from the whole volume with uniform 
distribution, and the weighted sampler, which extracts 
patches from different parts of the volume with a given 
non-uniform distribution. In our case, the weighted 
sampler extracts a patch with its center in the area of the 
healthy brain tissue with a probability of 0.5 and with its 
center in the area affected by the stroke with a probability 
of 0.5. The probability of the background as a patch’s 
center is set to 0. During one training epoch, the same 
number of patches set to 32 are extracted for each patient. 
The patch size is set to 128×128×128. 

2.3. Neural network architecture 

Our deep learning algorithm builds on the encoder-
decoder 3D U-Net [36] convolutional neural network, which 
we specially modify for our objective. The architecture of 
the neural network is shown in Figure 1. The input size is 
128×128×128. Each convolutional block of encoder and 
decoder consists of two 3D convolutions with the size of 
kernel 3×3×3 and stride of 1×1×1, where each of them is 
followed by a normalization layer and activation function. 
We adopt LeakyReLU as an activation function since it 
showed better results in our experiments in comparison with 
more commonly used ReLU. 

It is known that batch normalization [47] is strongly 
contingent on the current batch statistics during training. 
The statistics can include some noise, depending on the 
input examples. Therefore, it requires a sufficiently large 
batch size and also a large size of the training set. 
However, due to the high memory usage of 3D 
convolutions when employing large patches, we are 

limited to a maximum batch size of 2. Thus, we apply 
instance normalization, which solves this issue and shows 
better performance in our task than batch normalization. 

Trilinear upsampling is used instead of the more 
traditional transposed convolution operator in the decoder 
part. In our research, we observe similar results, but the 
upsampling operator has no trainable parameters, so the 
occupied memory can be reduced. 

Residual connections mitigate the problem of 
vanishing and exploding gradients when training deep 
neural networks. It was first proposed in ResNet [48]. We 
integrate this technique in each convolution block of the 
contracting and expansive paths. The input is processed 
by 3D convolution with a kernel size of 1×1×1, so the 
element-wise addition is possible. The architecture 
diagram of the convolutional block of the encoder with 
residual connection is illustrated in Fig. 3. The 
parameters in brackets after Conv3D are the number of 
input channels, output channels, and kernel size. The 
decoder block is similar except for trilinear upsampling 
that halves the number of channels instead of 3D 
convolution that doubles the number of channels, 
therefore we leave aside the decoder block image. 

We insert the Squeeze-and-Excitation (SE) 
mechanism [41] in our CNN as it shows strong 
performance in many computer vision tasks. It squeezes 
the global spatial information into a channel descriptor, 
captures inter-dependencies of all channels, and then 
recalibrates the feature maps to accentuate relevant 
channels. In our case, it can help to learn where the 
affected area is located by strengthening the informative 
features and suppressing the weak ones. 

Channel-wise global average pooling is applied to the 
input tensor TRC×D×H×W of the SE block. Then the 
obtained vector URC is processed by the excitation 
mechanism: 

  2 1 ,, CS W W U S R       

where ( / )
1

C r CW R   is a linear layer reducing the number 
of dimensions of the vector U,  is the ReLU activation 
function, ( / )

2
C C rW R   is a linear layer increasing the 

number of dimensions of the vector U,  is the sigmoid 
function, and r is a parameter. In the end, a channel-wise 
multiplication between each element si of the vector S 
and the input tensor T is performed. SE module is 
integrated into each convolutional block. Its particular 
location is shown in Fig. 2. 

2.4. Training procedure 

The obtained segmentation maps from the last CNN 
layer are transformed by the sigmoid function to get the 
probabilities of classes. Then the neural network weights 
are optimized using the sum of binary cross-entropy 
(BCE) and soft Dice [49] loss functions. We also perform 
experiments with weighted BCE loss since it addresses 
the class imbalance problem: 
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where N0 is the number of background pixels of all 
training images, N1 is the number of pixels related to the 

affected area, N = N0
 + N1, yi and pi denote the ground 

truth and the confidence score of the model for pixel i, 
respectively. 

2.5. Training, implementation and testing details 

We train our networks using the following setting: the 
batch size of 2, Adam optimizer [50] with the initial 
learning rate of 1E-4, which is reduced by factor 2 every 
5000 iterations until the learning rate is 1.25E-5, L2 
weight decay of 1E-5. The reduction ratio r of SE is 16. 
Each model was trained for a total of 40000 iterations. 

 
Fig. 2. CNN architecture 

 
Fig. 3. Convolutional block of the encoder 

The proposed algorithm was implemented in Python 
3.7 using PyTorch 1.12.0 machine learning framework. 
We also employ TorchIO 0.18.80 [51] Python library for 
data pre-processing. All trainings were conducted on 
NVIDIA Tesla T4 GPU with 16 GB of memory. 

All patients were randomly split into five parts, so all 
experiments were performed using five-fold cross-
validation. To evaluate our results, we measure Dice 
similarity coefficient (DSC), sensitivity, specificity, and 
precision metrics, which are most significant in medical 
image segmentation. The use of these metrics, in addition 
to the main metric DSC, allows us to evaluate aspects of 
the behavior of segmentation methods in conditions of 
unbalanced samples. Results are presented as mean  
standard deviation. DSC is calculated similarly to the soft 

Dice loss but is not subtracted from 1 and thresholded 
values are used instead of confidence scores. To get the 
predicted binary segmentation mask, the obtained 
probabilities were binarized according to the threshold 
of 0.5. On the test set, patches were extracted across a 
whole volume with an overlap of 25 % over a grid. The 
predictions in the overlapping areas were averaged. 

3. Experiments and results 

The quantitative comparison of our methods is 
presented in Tab. 1. The pre-processing of the first 
experiment included only thresholding of the Hounsfield 
units and the min-max normalization. Also, patches were 
derived using the uniform sampler. The results of the 
second experiment show that adding the robust pre-
processing techniques, including selecting the brain tissue 
and cutting to the non-zero region, increases DSC by 
0.3 %. The restricted patch extraction method performed 
by the weighted sampler during training improves 
performance by 3.6 % of DSC and 4.9 % of sensitivity. 
The main proposed modifications of 3D U-Net are 
residual connections and SE. While the integration of the 
residual connections improves the DSC by 2.7 %, the 
consistent inserting of the SE modules gives a 3.8 % of 
DSC increase, also showing the promising sensitivity 
value of 68.9  5.9 %. The final algorithm configuration 
maintains the above-described improvements, while also 
standardization before min-max normalization and 
training using the weighted loss function are performed. 
Such a configuration gives the best results, 62.8  3.3 % 
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of DSC and 69.9  3.9 % of sensitivity and improves DSC 
by 12.0 %, sensitivity by 10.2 %, and precision by 10.0 % 
over the baseline. 

We also study how the patch overlapping size impacts 
the segmentation accuracy when performing testing. 
Tab. 2 shows the quantitative assessment with 25 %, 
50 %, and 75 % path overlapping using the final 
algorithm configuration. Although the overlapping of 

75 % gives the best results relying on DSC, it reduces 
sensitivity, and the running time of the algorithm per one 
patient is increased by 10 times. 

We tried to insert in the training process various 
augmentation techniques, such as random affine 
transformation, random flip, random elastic deformation, 
random gamma intensity transformation, but it worsened 
the performance of our algorithm. 

Tab. 1. Cross-validation results 

Method DSC (%) Sensitivity (%) Specificity (%) Precision (%) 

No pre-processing (baseline) 50.8  3.7 59.7  9.0 99.8  0.1 51.9  5.7 
Pre-proccesing 51.1  2.3 51.8  3.5 99.8  0.1 61.7  3.8 
Pre-processing + weighted sampler 54.7  2.5 56.7  7.6 99.8  0.2 61.6  6.9 
Pre-processing + weighted sampler  
+residual connections 

57.4  1.6 60.6  6.4 99.8  0.1 61.5  4.9 

Pre-processing + weighted sampler  
+ residual connections+ SE 

61.2  6.4 68.9  5.9 99.7  0.2 61.9  4.4 

Pre-processing + standardization  
+weighted sampler +residual connections 
+ SE +weighted loss 

62.8  3.3 69.9  3.9 99.7  0.2 61.9  3.6 

Tab. 2. The comparison of the patch overlap sizes 

Overlap 
size, % 

Time per 
patient, s 

DSC 
(%) 

Sensitivity (%) Specificity (%) Precision (%) 

25 45 62.8  3.3 69.9  3.9 99.7  0.2 61.9  3.6 
50 90 62.2  2.2 69.3  4.7 99.7  0.2 62.9  3.6 
75 440 63.0  2.5 69.3  4.9 99.7  0.2 63.8  3.0 

 

 
Fig. 4. Qualitative segmentation results 

Qualitative results are presented in Fig. 3. Several 
axial plane slices of the 3D images are from the 
validation set. 

Conclusion 

In this work, we presented and evaluated an automatic 
algorithm for the segmentation of acute ischemic stroke 
lesion in non-contrast computed tomography brain 
images. Our deep learning approach is based on the 
3D U-Net convolutional neural network. As far as we 
know, no previous research has investigated the 
combination of 3D U-Net, Squeeze-and-Excitation 
blocks, residual connections, special patch extraction 

technique, and weighted loss function for solving the 
problem of acute ischemic stroke lesion segmentation on 
NCCT images. We have experimentally shown that the 
suggested pipeline for NCCT images segmentation, as 
compared to other state-of-the-art methods, improved 
segmentation performance by implementing robust pre 
processing techniques, Squeeze-and- Excitation blocks, 
and residual connections. Also, special patch extraction 
technique and weighted loss function increased the 
segmentation accuracy under the strong imbalance of 
classes. Our proposed model showed an average Dice of 
62.8  3.3 %, sensitivity of 69.9  3.9 %, specificity of 
99.7  0.2 %, and precision of 61.9  3.6 %. High specificity 
values are caused by the dominance of the negative class 
(non-affected tissue) over the positive class (pathological 
area) in the sample. The final improvement of the suggested 
pipeline over the baseline amounted to 12.0 % of DSC, 
10.2 % of sensitivity, and 10.0 % of precision. 

The method can be used by radiologists in delineating 
between damaged and healthy brain tissue and deciding 
on further treatment. In particular, it can help correct 
inaccuracies in their stroke area predictions. Moreover, 
the method can assist doctors with the large flow of 
patients by selecting cases with affected brain areas from 
normal ones. Thus, doctors first of all examine patients in 
need of emergency care. 

It is also important to note that one of the main 
constraints of our objective is the small amount of data in 
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our dataset. It is with this we associate the unusual 
obtained values of the specificity metric, and with the 
class imbalance problem. In the future, we plan to explore 
other CNN architectures and increase the dataset. 
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