Н.В.НЕСТЕРОВА, А.В.БУЛАНОВА Самарский государственный университет, О.Г.ЛАРИОНОВ°

Институт физической химии РАН

ПРОЦЕССЫ РАСПРЕДЕЛЕНИЯ В ГАЗОВОЙ ХРОМАТОГРАФИИ ВЫСОКОГО ДАВЛЕНИЯ

Вопросы, связанные с ролью газа-носителя в хроматографическом процессе, вызывают в последнее время определенный интерес [1-3]. Это обусловлено тем, что обнаруженные исследователями эффекты могут быть использованы для оптимизации хроматографического процесса — регулирования селективности, концентрирования примесей и т.п. Еще в более ранних исследованиях, обобщенных в монографии [4], показано, что газ-носитель может быть использован как активный участник хроматографического процесса.

В работе [5] теоретически обосновано влияние общего давления на коэффициент емкости колонки и показано, что

$$k = \frac{RT\rho}{M\gamma_i^{\infty}P_{i(p)}^0} \cdot \frac{V_S}{V_0} = \frac{RT\rho \cdot exp[V_{0i}(P_0^0 - P)RT]}{M\gamma_i^{\infty}P_i^0} \cdot \frac{V_S}{V_0}, \tag{1}$$

где k — коэффициент емкости на участке колонки, характеризующемся давлением P; γ_i^{∞} — коэффициент активности сорбата при бесконечном разбавлении в растворе неподвижной жидкости; $P^0_{\ i}$ — давление пара чистого сорбата; $P^0_{\ i(p)}$ — давление пара чистого сорбата при давлении P в стандартных условиях; ρ и M — соответственно плотность и молекулярная масса неподвижной фазы; V_{0i} — парциальный мольный объем чистого сорбата; V_S и V_0 — объемы колонки, занятые неподвижной и газовой фазами соответственно.

Такой вид уравнения (1) обусловлен известной в термодинамике зависимостью давления пара чистого компонента от общего давления [6]:

$$\ln P^{0}_{i} = \ln P^{0}_{i(p)} + V_{0i}(P^{0}_{i} - P)/RT.$$
 (2)

Дифференцирование уравнения (1) позволяет установить характер изменения коэффициента емкости колонки при изменении общего давления (парциальный объем и коэффициент активности сорбата приняты не зависящими от давления):

17-523 129

[®] Нестерова Н.В., Буланова А.В., Ларионов О.Г., 1999

$$\frac{dK}{dP} = -\frac{\rho V_{0i}}{\gamma_i^* P_i^0 M} \cdot \frac{V_s}{V_0} \cdot \exp \frac{V_{0i} \left(P_i^0 - P\right)}{RT}.$$
(3)

Из уравнения (3) следует, что с увеличением общего давления в колонке коэффициент емкости должен уменьшаться. Неидеальность газовой фазы при этом не учитывается.

Аналогичная зависимость наблюдается и для коэффициента распределения сорбата между подвижной и неподвижной фазами, отличающегося от значения коэффициента емкости на величину $\frac{V_S}{V}$ [7]

$$K = \frac{RT\rho}{M\gamma_{\bullet}^{\infty}P_{i(\alpha)}^{0}}$$
 (4)

Интересным является вопрос о характере влияния давления на константу Генри, характеризующую процесс в условиях бесконечного разведения. Закон Генри так же, как и закон Рауля, является предельным законом и, следовательно, применим ко всем известным в термодинамике случаям зависимости парциальных мольных величин от концентрации растворенного вещества в бесконечно разбавленном растворе, в частности, и для раствора сорбата в неподвижной жидкости в условиях хроматографического процесса.

Согласно закону Генри, паршиальное давление сорбата в газовой фазе пропорционально при равновесии его концентрации (или мольной доле х) в растворе [8]

$$K_{H} = P_{i(p)} / x_{i}. \tag{5}$$

Закон Рауля дает соотношение между мольной долей любого вещества в растворе и его парциальным давлением в газовой фазе при равновесии [7]

$$P_{i(p)} = x_i \gamma^{\infty} P^{0}_{i(p)}. \tag{6}$$

Объединяя уравнения (5) и (6), получаем

$$K_{\rm H} = \gamma^{\infty} P^{0}_{i(p)} . \tag{7}$$

Принимая во внимание уравнение (2), можно записать выражение, связывающее константу Генри с общим локальным давлением в колонке:

$$K_{H} = \gamma^{00} P_{i}^{0} \exp[V_{0i}(P - P_{i}^{0})]/RT$$
 (8)

Дифференцирование уравнения (8) по давлению позволяет заключить, что с увеличением общего давления константа Генри должна возрастать:

$$\frac{dK_{H}}{dP} = -\frac{\gamma_{i}^{\infty} P_{i}^{0} V_{0i}}{RT} \cdot \exp \frac{V_{0i} (P - P_{i}^{0})}{RT}$$
 (9)

В табл. 1 представлены значения констант Генри, рассчитанные по уравнению (8). Коэффициенты активности сорбатов, необходимые для расчета констант Генри, определялись из экспериментальных данных при избыточном давлении 1 атм на входе, когда газовую фазу можно было условно считать идеальной. Расчеты проводили, сделав допущение, что при изменении давления мольный объем сорбата и коэффициент активности его в растворе неподвижной жидкости постоянны.

Таблица 1

Значения K_H , рассчитанные по уравнению (8) при различных давлениях газа-носителя на входе в колонку P и постоянной скорости газа-носителя (неподвижная фаза SE-30, T = 423 K)

Р,МПа	Пентан	Гексан	Гептан	Октан
0.42	90.8	66.2	22.6	11.6
0.48	91.0	66.3	22.7	11.7
1.19	93.3	68.1	23.3	12.1
2.92	98.9	72.3	24.9	12.9
4.13	103.0	75.8	26.1	13.6
11.17	130.0	96.7	34.0	18.2
14.76	146.8	110.1	39.1	21.1

Экспериментальная часть

Эксперименты проводили с использованием установки, созданной на базе газового хроматографа ЛХМ-80М-Д. Узлы и коммуникации установки опрессовывались под давлением свыше 20 МПа. Схема установки приведена на рис. 1.

Рис. 1. Схема установки, работающей под высоким давлением газаносителя: 1, 5 – регулирующие вентили, 2 – манометры, 3 – дозатор, 4 – колонка, 6 – детектор

Установка позволяла с помощью вентилей 1 и 5 создавать давление в колонке, которое контролировали образцовыми манометрами 2, перепад давления по длине колонки определялся условием, чтобы расход газаносителя на выходе из колонки был постоянным независимо от входного давления.

Газом-носителем служил азот, детектором — катарометр. Колонка — стальная трубка с внутренним диаметром 3 мм, длиной 98 см, заполненная хромосорбом N-AW с нанесенной на него в количестве 15% масс неподвижной фазой SE-30. Вентиль 1 обеспечивал поддержание постоянной скорости газа-носителя в системе (на выходе из колонки объемная скорость F_c равнялась 1 см 3 /с). Сорбатами служили некоторые члены гомологического ряда H-парафинов.

Из первичных экспериментальных данных рассчитывали коэффициент активности и затем по уравнению (8) – константы Генри.

Теоретическая часть

Из табл. 1 следует, что константа Генри увеличивается в приведенном ряду н-парафинов с увеличением давления газа-носителя на входе. Это наглядно иллюстрирует рис. 2, на котором приведена зависимость $K_{\rm H}$ от среднего давления в колонке.

Таким образом, очевидно, что при различных входных давлениях и одинаковой объемной скорости газа-носителя наблюдается увеличение констант Генри.

Рис. 2. Зависимость констант Генри от среднего давления в колонке. Сорбаты: 1- пентан, 2 – гексан, 3 – гептан, 4 – октан

Интересно было посмотреть динамику изменения константы Генри вдоль длины хроматографической колонки.

Из известного в литературе соотношения [9]

$$P = \left(\frac{\left(P_1^2 - P_0^2\right)}{L} + P_0^2\right)^{V_2}$$
 (10)

рассчитывали общее локальное давление в различных частях колонки. Здесь l- длина колонки от выхода газа-носителя из колонки до данной точки (задавали произвольно); L — общая длина колонки; P_1 , P_0 — давление газаносителя на входе и выходе соответственно.

Результаты расчета приведены в табл. 2.

Динамику изменения константы Генри по длине колонки иллюстрирует рис. 3, из которого следует, что при увеличении давления на входе и постоянной скорости газа-носителя отдельные участки колонки характеризуются различными увеличивающимися значениями равновесных характеристик хроматографического процесса.

18-523 133

Значения K_{Γ} на различных участках колонки, рассчитанные по уравнению (8)

Пентан									
$P_1,M\Pi a$	Р ₀ ,МПа	<i>l</i> = 0.2	<i>l</i> = 0.4	l = 0.6	1 = 0.8	<i>l</i> = 1.0			
0.42	0.13	90.5	90.8	91.0	91.2	91.3			
0.48	0.14	90.6	90.9	91.2	91.4	91.6			
1.19	0.55	92.6	93.2	93.7	94.1	94.5			
2.92	1.22	96.7	98.4	99.8	101.0	102.2			
4.13	1.70	99.4	101.8	103.9	105.7	107.9			
11.17	4.36	110.5	127.5	134.7	141.7	148.2			
14.76	5.92	131.2	143.1	154.0	164.2	174.1			
	Гексан								
Р,,МПа	Р ₀ ,МПа	l = 0.2	l = 0.4	<i>l</i> = 0.6	l = 0.8	l = 1.0			
0.42	0.13	65.9	66.1	66.3	66.4	66.6			
0.48	0.14	66.0	66.3	66.5	66.7	66.8			
1.19	0.55	67.5	68.0	68.4	68.7	69.0			
2.92	1.22	70.7	72.0	73.1	74.1	75.0			
4.13	1.70	72.8	74.7	76.3	77.7	79.5			
11.17	4.36	81.4	94.8	100.6	106.0	111.2			
14.76	5.92	97.7	107.1	115.8	124.0	131.9			
	Гептан								
$P_1,M\Pi a$	Р ₀ ,МПа	l = 0.2	l = 0.4	l = 0.6	l = 0.8	<i>l</i> = 1.0			
0.42	0.13	22.5	22.5	22.6	22.7	22.7			
0.48	0.14	22.5	22.6	22.7	22.8	22.8			
1.19	0.55	23.1	23.3	23.4	23.5	23.6			
2.92	1.22	24.3	24.8	25.2	25.5	25.8			
4.13	1.70	25.0	25.7	26.3	26.9	27.5			
11.17	4.36	28.3	33.3	35.5	37.6	39.5			
14.76	5.92	34.4	38.0	41.3	44.5	47.5			
Октан									
Р₁,МПа	Р ₀ ,МПа	l = 0.2	l = 0.4	l = 0.6	1 = 0.8	<i>l</i> = 1.0			
0.42	0.13	11.5	11.6	11.6	11.7	11.7			
0.48	0.14	11.6	11.6	11.7	11.7	11.8			
1.19	0.55	11.9	12.0	12.1	12.2	12.3			
2.92	1.22	12.6	12.9	13.1	13.3	13.5			
4.13	1.70	13.0	13.4	13.8	14.1	14.4			
11.17	4.36	14.9	17.8	19.0	20.2	21.4			
14.76	5.92	18.4	20.5	22.4	23.3	26.1			

Примечание. P_{1-} давление на входе в колонку, P_{0} – давление на выходе из колонки, l – расстояние на выходе из колонки (неподвижная фаза SE-30)

Рис. 3. Изменение констант Генри для пентана по длине колонки l (расстояние от выхода из колонки) при разных давлениях на входе в колонку (P_1 , МПа): 1-14.76, 2-11.17, 3-4.13, 4-1.19, 5-0.42

Таким образом, изменяя давление на входе, можно менять селективность колонки по длине. Кроме того, резкое изменение перепада давления в ходе хроматографического процесса может использоваться подобно хроматофокусированию [10] для концентрирования сорбатов.

Работа выполнена при финансовой поддержке Федеральной целевой программы «Интеграция» (код № КО357).

Библиографический список

- 1. Вигдергауз М.С. // Успехи химии. 1993, 63. № 7, 1.
- 2. Wicar S., Novac J. // J. Chromatogr., 1974, 95. 1-12.
- 3. Davankov V.A. // Chromatographia, 1997, 44. № 5/6. C. 279-282.
- 4. Вигдергауз М.С., Гарусов А.В., Езрец В.А., Семкин В.И. Газовая хроматография с неидеальными элюентами. М.: Наука, 1980. 145 с.
 - 5. Буланова А.В. Докл. Акад. Наук, 1996, 348. № 6. С. 772-773.
- 6. Шахпаронов М.И. Введение в молекулярную теорию растворов. М.: Гос. издво технико-теорет. лит-ры, 1956.507 с.
- 7. Гиошон Ж., Гийемен К. Количественная газовая хроматография. М.: Мир. 1991, 1. 582 с.

- 8. Кричевский И.Р., Казарновский Я.С. // Журн. физич. химии, 1953, 6. С. 1370.
- 9. Гольберт К.А., Вигдергауз М.С. Введение в газовую хроматографию. М.: Химия, 1990. 352 с.
 - 10. Sluyterman L.A. // J. Chromatogr., 1989, 470. P. 317.

С.Ю.КУДРЯШОВ, Л.А.ОНУЧАК, А.В.ВАСИЛЬЕВА, А.В.ВОРОНКОВ Самарский государственный университет, И.К.МОИСЕЕВ*

Самарский государственный технический университет

ИССЛЕДОВАНИЕ АДСОРБЦИИ АДАМАНТАНА И НЕКОТОРЫХ ЕГО ПРОИЗВОДНЫХ НА ПОВЕРХНОСТИ ГРАФИТИРОВАННОЙ ТЕРМИЧЕСКОЙ САЖИ МЕТОДОМ ГАЗОВОЙ ХРОМАТОГРАФИИ

Графитированная термическая сажа (ГТС) является адсорбентом с плоской химически однородной поверхностью, адсорбция на которой чрезвычайно чувствительна к молекулярной структуре адсорбатов, что может быть использовано как для разделения близких по свойствам соединений, так и для изучения пространственного строения органических молекул [1, 2].

Адсорбция производных адамантана на твердых поверхностях практически не изучена, в то время как целый ряд работ посвящен изучению сорбции производных адамантана и некоторых других каркасных соединений различными неподвижными жидкими фазами [3-6]. В литературе имеются данные по адсорбции на поверхности ГТС лишь незамещенного адамантана [1, 7]. Цель настоящей работы — экспериментальное исследование адсорбции адамантана и некоторых его функциональных производных на поверхности ГТС. Уникальное строение молекул исследуемых соединений (рис. 1) — наличие объемного жесткого высокосимметричного углеводородного каркаса, содержащего в случае замещенных адамантанов относительно небольшие по размерам функциональные группы с электроотрицательными атомами — является причиной ряда особенностей их хроматографического поведения.

Таким образом, с одной стороны, изучение адсорбции производных адамантана на поверхности ГТС позволяет выявить особенности межмолекулярных взаимодействий, в которые вступают данные соединения, и дополнить тем самым данные, полученные методом газожидкостной хроматогра-

^{* ©} Кудряшов С.Ю., Онучак Л.А., Васильева А.В., Воронков А.В., Моисеев И.К., 1999