8. Кудрявцев, П.И. Развитие усталостных трещин в сталях в связи с поверхностным наклёпом / П.И. Кудрявцев, Т.И. Морозова // Исследования по упрочнению деталей машин. – М.: Машиностроение. – 1972. – С. 194-200.

9. Трощенко, В.Т. Трещиностойкость металлов при циклическом нагружении [Текст] / В.Т. Трощенко, В.В. Покровский, А.В. Прокопенко. – Киев: Наукова Думка, 1987. – 256 с.

УДК 621.787:539.319

Сазанов В.П., Пилипив О.М., Вакулюк В.С., Денискина Е.А., Коныхова А.С.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ ВЛИЯНИЯ ДРОБЕСТРУЙНОЙ ОБРАБОТКИ НА СОПРОТИВЛЕНИЕ УСТАЛОСТИ ЦИЛИНДРИЧЕСКИХ ДЕТАЛЕЙ С КОНЦЕНТРАТОРАМИ НАПРЯЖЕНИЙ МЕТОДОМ «ОБРАЗЦОВ-СВИДЕТЕЛЕЙ»

Дробеструйная обработка поверхности деталей в машиностроении является одним из наиболее распространённых и эффективных способов повышения сопротивления усталости при их работе в условиях действия переменных напряжений. Вместе с тем при прогнозировании предела выносливости за счёт упрочнения, а также выбора оптимальных режимов технологического процесса разработчикам требуется комплексно решить ряд следующих задач:

 – экспериментальное определение распределений остаточных напряжений по толщине упрочнённого слоя (в лабораторных условиях);

 моделирование остаточного напряжённо-деформированного состояния в гладких деталях и деталях с концентраторами напряжений с применением современных САЕ– систем;

 выбор критерия влияния поверхностного упрочнения с последующей разработкой методики прогнозирования предела выносливости за счёт упрочнения.

При экспериментальном определении остаточных напряжений с применением метода «образца-свидетеля» разрушению подвергается только «образецсвидетель». Такой образец, имеющий определённые размеры и форму, проходит весь технологический цикл упрочняющей обработки вместе со штатной деталью. Как известно, связь между приращением предела выносливости упрочнённых деталей и остаточными напряжениями наиболее точно отражает критерий среднеинтегральных остаточных напряжений $\bar{\sigma}_{ocr}$ [1–3]. Оценка влияния поверхностного упрочнения на приращение предела выносливости детали при изгибе $\Delta \sigma_{-1}$ с использованием критерия $\bar{\sigma}_{ocr}$ производится по следующей зависимости [1]:

$$\Delta \sigma_{-1} = \bar{\psi}_{\sigma} \left| \bar{\sigma}_{\rm ocr} \right|,\tag{1}$$

где $\bar{\psi}_{\sigma}$ – феноменологический коэффициент влияния поверхностного упрочнения на предел выносливости по критерию $\bar{\sigma}_{ocr}$; $\bar{\sigma}_{ocr}$ – среднеинтегральные остаточные напряжения, определяемые на критической глубине нераспространяющейся трещины усталости t_{sp} , возникающей в опасном сечении упрочнённой детали при работе на пределе выносливости.

Коэффициент $\bar{\psi}_{\sigma}$ зависит от степени концентрации напряжений и вычисляется, например, для случая изгиба по следующей формуле:

$$\overline{\psi}_{\sigma} = 0,612 - 0,081 \,\alpha_{\sigma},\tag{2}$$

где α_{σ} – теоретический коэффициент концентрации напряжений.

Критическая глубина нераспространяющейся трещины усталости определяется только размерами опасного поперечного сечения. Для цилиндрических образцов и деталей зависимость для определения $t_{\rm kp}$ имеет вид [1–3]:

- для сплошного цилиндра $t_{\rm kp} = 0.0216 D_1;$

(3)

- для полого цилиндра
$$t_{\rm kp} = 0.0216 D_1 \Big[1 - 0.04 (d / D_1)^2 - 0.54 (d / D_1)^3 \Big],$$
 (4)

где D_1 – диаметр опасного сечения образца или детали, *d* – диаметр отверстия образца или детали.

В данной работе приводятся результаты исследований по апробации расчётно-экспериментального метода с использованием «образцов-свидетелей» для распространённых в машиностроении следующих конструкционных материалов: сталь 20, сталь 45, сталь 12Х18Н10Т, алюминиевый сплав Д16Т. Из указанных материалов были изготовлены детали в виде сплошных и полых цилиндрических образцов с наружным диаметром D в гладкой части, диаметром отверстия d, диаметром наименьшего сечения надреза D_1 . Гладкие образцы из стали 20 подвергались пневмодробеструйной обработке, а из сталей 45 и 12Х18Н10Т, сплава Д16Т – гидродробеструйной обработке. После упрочнения на образцы наносились концентраторы в виде полукруглого надреза радиусом R = 0,3 мм. В качестве «образцов-свидетелей» использовались втулки с наружным диаметром D = 51,5 мм и внутренним d = 45 мм из тех же материалов.

Расчётная часть исследований выполнялась с помощью метода конечно– элементного моделирования с использованием комплекса PATRAN/NASTRAN Первоначальные остаточные деформации по толщине упрочнённого поверхностного слоя образцов моделировались методом термоупругости [4, 5].

При определении первоначальных деформаций в качестве исходных данных использовалось экспериментальное распределение осевых σ_z остаточных напряжений по толщине *a* упрочнённого поверхностного слоя втулки (рис. 1, 2), которое было получено методом колец и полосок [6].

Рис. 1. Распределение осевых σ_z остаточных напряжений в «образцах-свидетелях» (втулки с D = 51,5 мм, d = 45 мм) из стали 20 (а) и стали 45 (б) после пневмодробеструйной обработки (а) и гидродробеструйной обработки (б)

Рис. 2. Распределение осевых σ_z остаточных напряжений в «образцах-свидетелях» (втулки с *D* = 51.5 мм, *d* = 45 мм) из стали 12Х18Н10Т (а) и алюминиевого сплава Д16Т (б) после гидродробеструйной обработки

Распределения осевых σ_z остаточных напряжений в опасных сечениях образцов с надрезами рассчитывались аналитическим методом [1] и численным методом с использованием программного комплекса PATRAN/NASTRAN [4, 5]. Результаты представлены на рис. 3–6.

Рис. 3. Распределение осевых σ_z остаточных напряжений в образцах из стали 20 с надрезом R = 0,3 мм, вычисленных по экспериментальным (1) и по расчётным (2) данным: (a) -D = 10 мм, d = 0; (б) -D = 25 мм, d = 0; (в) -D = 25 мм, d = 15 мм

Рис. 4. Распределение осевых σ_z остаточных напряжений в образцах из стали 45 с надрезом R = 0,3 мм, вычисленных по экспериментальным (1) и по расчётным (2) данным: (a) -D = 15 мм, d = 5 мм; (б) -D = 25 мм, d = 15 мм; (в) -D = 50 мм, d = 40 мм

а

Рис. 5. Распределение осевых σ_z остаточных напряжений в образцах из стали 12X18H10T с надрезом R = 0,3 мм, вычисленных по экспериментальным (1) и по расчётным (2) данным: (a) -D = 10 мм, d = 0 мм; (б) -D = 15 мм, d = 0 мм; (в) -D = 15 мм, d = 5 мм; (г) -D = 15 мм, d = 10 мм

Рис. 6. Распределение осевых σ_{z} остаточных напряжений в деталях из сплава Д16Т с надрезом R = 0,3 мм, вычисленных по экспериментальным (1) и по расчётным (2) данным: a - D = 10 мм, $\delta - D = 15$ мм, e - D = 25 мм, z - D = 40 мм

Результаты расчётов приращений пределов выносливости $(\Delta \sigma_{-1})_{\text{расч}}$ и приращений $(\Delta \sigma_{-1})_{\text{эксп}}$ по результатам испытаний на усталость (при изгибе с вращением в случае симметричного цикла) представлены в табл. 1–4.

Таблица 1. Результаты расчётного и экспериментального определения пределов выносливости образцов с надрезами из стали 20

<i>D</i> , мм	<i>d</i> , мм	<i>D</i> ₁ , мм	<i>t</i> _{кр} , ММ	$ar{\sigma}_{_{ m oct}},$ МПа	$lpha_{\sigma}$	$\overline{\psi}_{\sigma}$	$(\Delta \sigma_{_{-1}})_{_{\mathrm{pacy}}},$ МПа	$\left(\Delta\sigma_{_{-1}} ight)_{_{ m SKC\Pi}},$ M Π a	Расхож- дение, %
10	0	9.4	0.203	-122	2.7	0.393	48.0	45.0	6
25	0	24.4	0.527	-89	2.9	0.377	33.6	30.0	11
25	15	24.4	0.453	-91	3.0	0.369	33.5	32.5	3

Таблица 2. Результаты расчётного и экспериментального определения пределов выносливости образцов с надрезами из стали 45

<i>D</i> , мм	<i>d</i> , мм	<i>D</i> ₁ , мм	<i>t</i> _{кр} , ММ	$ar{\sigma}_{_{ m ocr}},$ МПа	α_{σ}	$\overline{\psi}_{\sigma}$	$(\Delta \sigma_{_{-1}})_{_{\mathrm{pac}_{\mathtt{H}}}},$ M Π a	$\left(\Delta\sigma_{_{-1}} ight)_{_{ m эксп}},$ МПа	Расхож- дение, %
15	5	14.4	0.303	-159	2.8	0.385	61.2	57.5	6
25	15	24.4	0.453	-131	3.0	0.369	48.3	45.0	7
50	40	49.4	0.733	-87	3.1	0.361	31.4	30.0	4

Таблица 3. Результаты расчётного и экспериментального определения пределов выносливости образцов с надрезами из стали 12X18H10T

<i>D</i> ,	<i>d</i> ,	D_1 ,	$t_{\rm kp}$,	$ar{\sigma}_{\scriptscriptstyle ext{oct}}$,	a	177	$(\Delta\sigma_{\scriptscriptstyle -1})_{\scriptscriptstyle \mathrm{pacy}},$	$(\Delta\sigma_{\scriptscriptstyle -1})_{\scriptscriptstyle m 2 K cm}$,	Расхож-
MM	MM	MM	MM	МПа	a_{σ}	$\Psi \sigma$	МПа	МПа	дение, %
10	0	9.4	0.203	-129	2.54	0.406	52.4	45	16
15	0	14.4	0.311	-117	2.70	0.393	46	42.5	8
15	5	14.4	0.303	-119	2.63	0.399	47.5	42.5	12
15	10	14.4	0.249	-115	2.29	0.427	49.1	42.5	15

Таблица 4. Результаты расчётного и экспериментального определения пределов выносливости образцов с надрезами из алюминиевого сплава Д16Т

<i>D</i> , мм	<i>D</i> ₁ , мм	$t_{\kappa p}^{},$ MM	$\overline{\sigma}_{_{ocm}},$ МПа	α_{σ}	$\overline{arphi}_{\sigma}$	$(arDelta \sigma_{_{-1}})_{_{pac4}},$ МПа	$(arDelta \sigma_{\scriptscriptstyle \! -\! 1})_{_{\! on}},$ M Π a	Расхож- дение, %
10	9,4	0,203	-208	2,7	0,393	81,6	70	17
15	14,4	0,311	-166	2,8	0,385	63,8	57,5	11
25	24,4	0,527	-123	2,9	0,377	46,4	45	3
40	39,4	0,851	-78	3,1	0,361	28,2	30	6

Из представленных в табл. 1–4 данных видно, что расхождение между расчётными и экспериментальными значениями приращений пределов выносливости не превышает 11 % для стали 20, 7 % для стали 45, 16% для стали 12Х18Н10Т и 17% для алюминиевого сплава Д16Т. Следовательно, используя метод «образцов-свидетелей», можно с приемлемой для многоцикловой усталости точностью прогнозировать предел выносливости поверхностно упрочнённых цилиндрических деталей из различных конструкционных материалов в достаточно широком диапазоне изменения диаметров (10÷50 мм).

Библиографический список

1. Павлов, В.Ф. Прогнозирование сопротивления усталости поверхностно упрочнённых деталей по остаточным напряжениям / В.Ф. Павлов, В.А. Кирпичёв, В.С. Вакулюк. – Самара: Издательство СНЦ РАН, 2012. – 125 с.

2. Павлов, В.Ф. Влияние на предел выносливости величины и распределения остаточных напряжений в поверхностном слое детали с концентратором. Сообщение I. Сплошные детали / В.Ф. Павлов // Известия вузов. Машиностроение. – 1988. – №8. – С. 22–26.

3. Павлов, В.Ф. Влияние на предел выносливости величины и распределения остаточных напряжений в поверхностном слое детали с концентратором. Сообщение II. Полые детали / В.Ф. Павлов // Известия вузов. Машиностроение. – 1988. – №12. – С. 37–40.

4. Сазанов, В.П. Определение первоначальных деформаций в упрочнённом слое цилиндрической детали методом конечно-элементного моделирования с использованием расчётного комплекса PATRAN/NASTRAN / В.П. Сазанов,

В.А. Кирпичёв, В.С. Вакулюк, В.Ф. Павлов // Вестник УГАТУ. – 2015. – Т. 19. – №2(68). – С. 35–40.

5. Сазанов, В.П. Моделирование остаточного напряжённого состояния деталей в условиях концентрации напряжений с использованием программного комплекса MSC.NASTRAN\MSC.PATRAN / В.П. Сазанов, А.В. Чирков, О.Ю. Семёнова, А.В. Иванова // Вестн. Сам. гос. техн. ун-та. Сер. Техн. науки. – 2012. – №1(33). – С. 106-113.

6. Иванов, С.И. К определению остаточных напряжений в цилиндре методом колец и полосок / С.И. Иванов // Остаточные напряжения. – Куйбышев: КуАИ. – 1971. – Вып. 53. – С. 32–42.

УДК 621.787:539.319

Сазанов В.П., Письмаров А.В., Лунин В.В., Анисимов С.А., Коваль И.Ю.

ИССЛЕДОВАНИЕ ВЛИЯНИЯ ПРЕДВАРИТЕЛЬНОГО УПРОЧНЕНИЯ НА СОПРОТИВЛЕНИЕ УСТАЛОСТИ РЕЗЬБОВЫХ ДЕТАЛЕЙ

При опережающем поверхностном пластическом деформировании (ОППД) технологическая операция изготовления концентратора с небольшой по размерам геометрической формой производится на предварительно упрочнённой заготовке. В этом случае сжимающие остаточные напряжения в области концентратора образуются за счёт перераспределения остаточных усилий гладкой упрочнённой поверхности детали. Влияние ОППД при обкатке роликом было изучено на партиях образцов с метрической резьбой М16х2, изготовленных из сталей 40Х и 30ХГСА [1, 2]. При этом половина заготовок диаметром 16 мм из каждой стали подвергалась обкатке на приспособлении с тремя роликами диаметром 50 мм и с профильным радиусом 13 мм при частоте вращения заготовки 400 об/мин и подаче 0,43 мм/об. Усилие обкатки составляло 10,75 кН. Затем на упрочнённых и неупрочнённых заготовках нарезалась резьба М16х2.

Испытания упрочнённых и неупрочнённых образцов на усталость было выполнено следующим образом. Образцы из стали 30ХГСА без гайки испытывались при симметричном цикле по схеме чистого изгиба, из стали 40Х с гайкой –