Сазанов В.П., Семёнова О.Ю., Сургутанов Н.А., Денисов Л.В.

ПРИМЕНЕНИЕ РАСЧЁТНО-ЭКСПЕРИМЕНТАЛЬНЫХ МЕТОДОВ ДЛЯ ОЦЕНКИ ВЛИЯНИЯ УПРОЧНЕНИЯ НА ПРЕДЕЛ ВЫНОСЛИВОСТИ ЦИЛИНДРИЧЕСКИХ ОБРАЗЦОВ ИЗ РАЗЛИЧНЫХ СТАЛЕЙ

Исследование выполнено с использованием расчётно-экспериментального метода прогнозирования предела выносливости при упрочнении деталей методами поверхностного пластического деформирования (ППД). С целью его апробирования проанализированы результаты испытаний на усталость и экспериментального определения остаточных напряжений по толщине упрочнённого поверхностного слоя нескольких партий сплошных и полых цилиндрических образцов:

- из стали 20 диаметрами D = 10 мм, d = 0 мм; D = 25 мм, d = 0 мм и D = 25 мм, d = 15 мм; - из стали 45 диаметрами D = 15 мм, d = 5 мм; D = 25 мм, d = 15 мм и D = 50 мм, d = 40 мм (D – наружный диаметр, d – внутренний диаметр).

Гладкие образцы из стали 20 подвергались пневмодробеструйной обработке (ПДО), из стали 45 – гидродробеструйной обработке (ГДО). В качестве образцовсвидетелей использовались втулки с наружным диаметром D = 51,5 мм и внутренним диаметром d = 45 мм, в которых определялись остаточные напряжения по толщине упрочнённого поверхностного слоя методом колец и полосок [1].

Расчётная часть исследований выполнялась методом конечно-элементного моделирования с использованием комплекса PATRAN/NASTRAN. Моделирование остаточных напряжений по толщине упрочнённого поверхностного слоя гладких образцов было выполнено методом термоупругости [2].

При определении первоначальных деформаций в конечно-элементной модели образца-свидетеля использовалось экспериментальное распределение осевых σ_z остаточных напряжений по толщине *а* упрочнённого поверхностного слоя втулки (рисунок 1).

Рисунок 1 – Распределение осевых σ_z остаточных напряжений в образцах-свидетелях из сталей 20 (а) и 45 (б) (втулки диаметром 51,5×45 мм) после ПДО (а) и ГДО (б)

Следующий этап расчётов выполнялся на конечно-элементных моделях исследуемых гладких образцов различного диаметра по первоначальным деформациям образца-свидетеля (втулки). При оценке приращения предела выносливости поверхностно упрочнённых деталей в соответствии с теорией наибольших касательных напряжений определяющими являются осевые σ_z остаточные напряжения [3, 4]. Поэтому сравнение расчётных и экспериментальных распределений остаточных напряжений для исследуемых гладких образцов выполнялось по осевой компоненте. На рисунках 2, 3 представлены экспериментальные и расчётные распределения осевых σ_z остаточных напряжений по толщине *а* поверхностного слоя для исследуемых гладких образцов различного диаметра.

Рисунок 2 – Распределение осевых σ_z остаточных напряжений после ПДО, определённых экспериментальным (1) и расчётным (2) методами в гладких образцах из стали 20: а) D = 10 мм, d = 0 мм; б) D = 25 мм, d = 0 мм; в) D = 25 мм, d = 15 мм

Рисунок 3 – Распределение осевых σ_z остаточных напряжений после ГДО, определённых экспериментальным (1) и расчётным (2) методами в гладких полых образцах из стали 45: a) D = 15 мм, d = 5 мм; б) D = 25 мм, d = 15 мм; в) D = 50 мм, d = 40 мм

На рисунках 4, 5 представлены экспериментальные и расчётные эпюры осевых σ_z остаточных напряжений по толщине *a* поверхностного слоя опасного сечения образцов с надрезами после опережающего поверхностного пластического деформирования. При этом распределения сжимающих остаточных напряжений, полученные по экспериментальным и расчётным эпюрам гладких образцов, отличаются по наибольшим значениям не более, чем на 7% для стали 20 и на 4% для стали 45.

Рисунок 4 – Распределение осевых σ_z остаточных напряжений в образцах из стали 20 с надрезами R = 0,3 мм, вычисленных по экспериментальным (1) и по расчётным (2) данным: a) D = 10 мм, d = 0 мм; б) D = 25 мм, d = 0 мм; в) D = 25 мм, d = 15 мм

Рисунок 5 – Распределение осевых σ_z остаточных напряжений в полых образцах из стали 45 с надрезами R = 0,3 мм, вычисленных

по экспериментальным (1) и по расчётным (2) данным:

а) D = 15 мм, d = 5 мм; б) D = 25 мм, d = 15 мм; в) D = 50 мм, d = 40 мм

В приведённом исследовании оценка влияния поверхностного упрочнения на приращение предела выносливости деталей из сталей 20 и 45 при изгибе в случае симметричного цикла $\Delta \sigma_{-1}$ с использованием критерия среднеинтегральных напряжений $\overline{\sigma}_{acm}$ [3] производилась по следующей зависимости:

$$\Delta \sigma_{-1} = \overline{\psi}_{\sigma} \left| \overline{\sigma}_{ocm} \right|, \tag{1}$$

где $\overline{\psi}_{\sigma}$ – коэффициент влияния поверхностного упрочнения на предел выносливости по критерию $\overline{\sigma}_{ocm}$.

Коэффициент $\overline{\psi}_{\sigma}$ зависит только от степени концентрации напряжений и вычисляется для случая изгиба по следующей формуле [4]:

$$\overline{\psi}_{\sigma} = 0,612 - 0,081\alpha_{\sigma},\tag{2}$$

где α_{σ} – теоретический коэффициент концентрации напряжений. Значения критерия $\overline{\sigma}_{ocm}$, глубины трещины $t_{\kappa p}$, коэффициентов α_{σ} и $\overline{\psi}_{\sigma}$ представлены в таблицах 1, 2. После вычисления критерия $\overline{\sigma}_{ocm}$ и коэффициента $\overline{\psi}_{\sigma}$ по формуле (1) определялись расчётные значения приращений пределов выносливости $(\Delta \sigma_{-1})_{pacy}$ упрочнённых образцов с надрезами радиуса R=0,3 мм (таблицы 1, 2) и сравнивались с экспериментальными значениями $(\Delta \sigma_{-1})_{pacy}$, приведёнными в работе [4].

Таблица 1 — Результаты расчётного и экспериментального определения пределов выносливости образцов с надрезами из стали 20

<i>D</i> , мм	<i>d</i> , мм	t _{кр} , ММ	$\overline{\sigma}_{_{ocm}},$ МПа	$lpha_{\sigma}$	$\overline{\psi}_{\sigma}$	$(arDelta \sigma_{_{-1}})_{_{pac4}}, \ M\Pi a$	$(\varDelta \sigma_{{}_{-1}})_{{}_{\!$	Расхож- дение, %
10	0	0,203	-122	2,7	0,393	48	45	6
25	0	0,527	-89	2,9	0,377	33,6	30	11
25	15	0,453	-91	3,0	0,369	33,5	32,5	3

Таблица 2 – Результаты расчётного и экспериментального определения пределов выносливости образцов с надрезами из стали 45

<i>D</i> , мм	<i>d</i> , мм	$t_{_{K\!P}}$, MM	$\overline{\sigma}_{_{ocm}}$, МПа	$lpha_{\sigma}$	$\overline{\psi}_{\sigma}$	$(\varDelta \sigma_{_{-1}})_{_{pac4}}$, МПа	$(\varDelta \sigma_{{}_{-1}})_{{}_{\! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! $	Расхож- дение, %
15	5	0,303	-159	2,8	0,385	61,2	57,5	6
25	15	0,453	-131	3,0	0,369	48,3	45	7
50	40	0,733	-87	3,1	0,361	31,4	30	4

Из данных таблицы 1, 2 видно, что расхождение между расчётными и экспериментальными значениями приращений пределов выносливости не превышает 11% для стали 20 и 7% для стали 45. Следовательно, используя результаты определения остаточных напряжений в образцах-свидетелях, представляется возможным прогнозировать предел выносливости поверхностно упрочнённых цилиндрических деталей из стали 20 после ПДО и из стали 45 после ГДО различных диаметров (10-50 мм) в условиях концентрации напряжений с достаточной для многоцикловой усталости точностью.

Библиографический список

1. Иванов, С.И. К определению остаточных напряжений в цилиндре методом колец и полосок [Текст] / С.И. Иванов // Остаточные напряжения. – Куйбышев: КуАИ. – 1971. – Вып. 53. – С. 32-42.

2. Сазанов, В.П. Моделирование перераспределения остаточных напряжений в упрочнённых цилиндрических образцах при опережающем поверхностном пластическом деформировании [Текст] / В.П. Сазанов, А.В. Чирков, В.А. Самойлов, Ю.С. Ларионова // Вестник СГАУ. – 2011. – №3(27). Ч. 3. – С. 171-174.

3. Павлов, В.Ф. О связи остаточных напряжений и предела выносливости при изгибе в условиях концентрации напряжений [Текст] / В.Ф. Павлов // Известия вузов. Машиностроение. – 1986. – №8. – С. 29-32.

4. Павлов, В.Ф. Прогнозирование сопротивления усталости поверхностно упрочнённых деталей по остаточным напряжениям [Текст] / В.Ф. Павлов, В.А. Кирпичёв, В.С. Вакулюк. – Самара: Издательство СНЦ РАН, 2012. – 125 с.