Вакулюк В.С., Михалкина С.А., Сургутанов Н.А., Матвеева К.Ф. ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА КОНЦЕНТРАЦИИ НАПРЯЖЕНИЙ В ШЛИЦЕВОЙ ДЕТАЛИ

Для определения коэффициента концентрации напряжений исследовалась шлицевая деталь со следующими параметрами: число зубьев – 24, модуль – 1, диаметр по вершинам зубьев $D_{\rm H}$ – 25,35 мм, $D_{\rm B}$ – 22 мм, $D_{\rm 1}$ – 16 мм, радиус впадины – 0,4 мм. Из детали вырезали широкое кольцо и разрезали по впадине (рис. 1). Рассматривали половину элемента кольца, изображённую на рис.2. Она нагружена на торцах единичными парами сил \overline{M} . В силу симметрии торцевые сечения остаются плоскими и поворачиваются одно относительно другого на угол $\alpha/2$. Следовательно, предстоит определить коэффициент $X_0^{(1)}$, зависимость между α и \overline{M} .

Рис.1. Нагружение кольца единичным моментом

Поставленная задача решалась методом конечных элементов. Для контроля программы зависимость $X_0^{(1)}$ и коэффициент концентрации напряжений определяли аналитическим способом по формулам сопротивления материалов, а коэффициент концентрации напряжений, полученный МКЭ, сравнивали с решением по Нейберу [1] (рис. 3). В табл. 1 приведены результаты аналитического решения и МКЭ.

Рис. 2. Нагружение половины элемента кольца

Рис. 3. Расчётная схема для определения коэффициента концентрации напряжений по Нейберу

Таблица 1. Значения $X_0^{(1)}$ и коэффициента концентрации напряжений

$X_0^{(1)}$, mm		Коэффициент концентрации напряжений			
МКЭ	Аналитическое решение	МКЭ	По Нейберу		
0,960	0,830	1,54	1,69		

Наблюдаемое расхождение $X_0^{(1)}$ объясняется резким изменением поперечного сечения кольца, что, строго говоря, исключает возможность применения элементарной теории изгиба.

Различие коэффициентов концентрации напряжений небольшое, оно обусловлено не только приближённым решением МКЭ, но и тем, что формула Нейбера не является точным решением задачи.

В табл. 2 приведены значения окружных напряжений $\sigma_{\varphi}^{(1)}$ по толщине *а* поверхностного слоя и вдоль дуги окружности впадины для шлицевого кольца.

		Ψ	1					
ф а, мкм	0	$\frac{\pi}{24}$	$\frac{\pi}{12}$	$\frac{\pi}{8}$	$\frac{\pi}{6}$	$\frac{5\pi}{24}$	$\frac{\pi}{4}$	$\frac{7\pi}{24}$
0	1,122	1,185	1,174	1,099	0,976	0,826	0,662	0,497
33	1,055	1,068	1,034	0,959	0,850	0,720	0,580	0,439
66	0,948	0,937	0,897	0,830	0,738	0,630	0,513	0,397
100	0,858	0,837	0,794	0,733	0,652	0,559	0,458	0,358

Таблица 2. Значения $\sigma_{\omega}^{(1)}$ в поверхностном слое впадин шлиц

Эпюра $\sigma_{\omega}^{(1)}$ на поверхности впадины шлицевой детали (a = 0) приведена на рис. 4.

Рис. 4. Окружные напряжения на поверхности впадины шлицевой детали

Максимальное значение напряжений в впадине шлицевой детали находится не в минимальном сечении, а расположено под углом 20 – 30 градусов от вертикали.

Коэффициент концентрации шлицевой детали определяется как отношение максимального напряжения на поверхности впадины к номинальному.

Библиографический список

1. Нейбер, Г. Концентрация напряжений [Текст] / Г. Нейбер. – М : Гостехиздат, 1949. – 204 с.