Сомов Е.И., Бутырин С.А., Сомов С.Е., Сомова Т.Е.

НАВЕДЕНИЕ И УПРАВЛЕНИЕ СВОБОДНОЛЕТАЮЩИМ РОБОТОМ ПРИ СБЛИЖЕНИИ С ПАССИВНЫМ КОСМИЧЕСКИМ ОБЪЕКТОМ

Введение

Разработка методов управления движением космических роботов-манипулято-ров (КРМ) для механического захвата, транспортировки и сервисного обслуживания пассивных космических объектов (ПКО) в условиях неопределенности и неполноты измерения состояния является актуальной научной проблемой.

Целью данной статьи является разработка стратегии наведения и управления КРМ, а также оценка потребных ресурсов его системы управления движение (СУД). Рассматриваются задачи наведения и управления движением КРМ при его сближением с вращающимся ПКО в дальнем космосе, когда можно пренебречь внешними возмущениями, которые влияют на движения ПКО и КРМ. При этом регулярно используются инерциальная система координат (ИСК) и система координат, связанная с корпусом КРМ, которую обычно называют связанной системой координат (ССК), а также стандартные обозначения со $(\cdot) = \{\cdot\}$, line $(\cdot) = [\cdot]$, $(\cdot)^t$, $[a \times]$ и \circ, \sim для векторов, матриц и кватернионов.

1. Математические модели и постановка задачи

Предполагается совпадение положений центра масс КРМ и полюса О в ССК Охуг. На рис. 1 представлена симметричная схема двигательной установки (ДУ) на основе 8 реактивных двигателей (РД). Орты \mathbf{e}_p , $p=1,...8\equiv1\div8$, осей сопел РД имеют в ССК представления в виде столбцов:

 $\mathbf{e}_{1} = -\mathbf{e}_{8} = \{C_{\alpha}C_{\beta}, C_{\alpha}S_{\beta}, S_{\alpha}\};$ $\mathbf{e}_{2} = -\mathbf{e}_{7} = \{C_{\alpha}C_{\beta}, C_{\alpha}S_{\beta}, -S_{\alpha}\};$ $\mathbf{e}_{3} = -\mathbf{e}_{6} = \{C_{\alpha}C_{\beta}, -C_{\alpha}S_{\beta}, S_{\alpha}\};$ $\mathbf{e}_{4} = -\mathbf{e}_{5} = \{C_{\alpha}C_{\beta}, -C_{\alpha}S_{\beta}, -S_{\alpha}\},$ $S_{x} \equiv \sin x, C_{x} \equiv \cos x, \ x = \alpha^{e}, \beta^{e}.$

Рис. 1. Схема ДУ на основе 8 РД

Векторы ρ_p , $p=1\div8$, точек O_p приложения вектора тяги РД в ССК (см. рис. 1) представляются столбцами:

$$\mathbf{\rho}_{1} = \{b_{x}, b_{y}, b_{z}\}; \quad \mathbf{\rho}_{2} = \{b_{x}, b_{y}, -b_{z}\}; \quad \mathbf{\rho}_{3} = \{b_{x}, -b_{y}, b_{z}\}; \quad \mathbf{\rho}_{4} = \{b_{x}, -b_{y}, -b_{z}\};$$
$$\mathbf{\rho}_{5} = \{-b_{x}, b_{y}, b_{z}\}; \quad \mathbf{\rho}_{6} = \{-b_{x}, b_{y}, -b_{z}\}; \quad \mathbf{\rho}_{7} = \{-b_{x}, -b_{y}, b_{z}\}; \quad \mathbf{\rho}_{8} = \{-b_{x}, -b_{y}, -b_{z}\},$$

При цифровом управлении ДУ каждый РД имеет кусочно-постоянное значение тяги $p_p(t) \in [0, P^m] \quad \forall t \in [t_r, t_{r+1}), r \in \mathbb{N}_0 \equiv [0, 1, 2, ...)$ с периодом T_u^e и запаздыванием T_{zu}^e , где $P^m > 0$ – максимальное значение тяги, одинаковое для всех РД. При отсутствии квантования по уровню формирование реактивной тяги представляется соотношением $p_p(t) = Zh(t - T_{zu}^e, t_r, T_u^e, \mathbf{v}_{pr}) \quad \forall t \in [t_r, t_{r+1}),$ где функция $y_r(t) = Zh(t, t_r, T_u^e, x_r) = x_r$ $\forall t \in [t_r, t_{r+1})$ описывает процесс фиксации сигнала x_r на полуинтервале $[t_r, t_{r+1})$. Здесь при обозначениях $\mathbf{p}_r = \{p_{pr}\}$ – вектор-столбец, составленный из значений тяги всех 8 РД; $\mathbf{t}_r^e = \{\mathbf{P}_r^e, \mathbf{M}_r^e\}$ – столбец, составленный из заданных в ССК векторов силы \mathbf{P}_r^e и момента \mathbf{M}_r^e ДУ; $\mathbf{D}^e = \{[\mathbf{e}_p], [\mathbf{\rho}_p \times \mathbf{e}_p]\}$ – прямоугольная матрица. Проблема заключается в решении уравнения $\mathbf{D}^e \mathbf{p}_r = \mathbf{t}_r^e$, $\mathbf{p}_r \in R_+^8$, $\mathbf{t}_r^e \in R^6$ при условии $0 \le p_{pr} \le P^m$ $\forall p = 1 \div 8$ относительно компонентов вектора-столбца $\mathbf{p}_r = \{p_{pr}\}$. Закон распределения цифровых значений тяги всех 8 РД на каждом полуинтервале времени $t \in [t_r, t_{r+1})$ с периодом T_u^e имеет следующую алгоритмическую форму:

 $\hat{\mathbf{p}}_r \equiv \{\hat{p}_{pr}\} = (\mathbf{D}^e)^\# \mathbf{t}_r^e; \, \tilde{p}_{pr} \rightleftharpoons \hat{p}_{pr} = \hat{p}_{pr} - \min(\hat{p}_{pr}); \quad if \ q \equiv \max(\tilde{p}_{pr}) > \mathbf{P}^m \ then \ p_{pr} = \tilde{p}_{pr} / q.$ В ССК вектор тяги *p*-го РД вычисляется по формуле $\mathbf{p}_p(t) = -p_p(t)\mathbf{e}_p$, а векторы силы \mathbf{P}^{e} и момента \mathbf{M}^{e} ДУ – в виде $\mathbf{P}^{e} = \Sigma \mathbf{p}_{p}(t) = \mathbf{P} = \{P_{1}, P_{2}, P_{3}\}$ и $\mathbf{M}^{e} = \Sigma [\mathbf{\rho}_{p} \times] \mathbf{p}_{p}(t)$. Для управления ориентацией КРМ применяется силовой гироскопический кластер (СГК)

четырех гиродинов (ГД). На рис. 2 представлена каноническая схема 2-*SPE*, состоящая из двух пар ГД с ортами кинетических моментов (КМ) $\mathbf{h}_p(\beta_p), p=1\div4;$ область вариации нормированного вектора КМ $\mathbf{h}(\mathbf{\beta}) = \Sigma \mathbf{h}_p(\beta_p)$ кластера, где столбец

Рис. 2. Схема СГК и область вариации его КМ $\beta = \{\beta_p\}$, и ее проекции на плоскости симметрии гироскопического базиса $Ox_c^g y_c^g z_c^g$. Все внутренние сингулярные состояния схемы 2-SPE являются проходимыми [1, 2], применяемый явный аналитический закон настройки СГК позволяет исключить избыточность кластера с вектором КМ $\mathbf{H} = h_g \mathbf{h}(\beta)$, где h_g – одинаковое для всех ГД значение модуля собственного КМ. При цифровом управлении $\mathbf{u}_k^g(t) = \{\mathbf{u}_{pk}^g(t)\}$ с периодом T_u , где $\mathbf{u}_{pk}^g(t) = \mathbf{u}_{pk}^g \quad \forall t \in [t_k, t_{k+1}), t_{k+1} = t_k + T_u$ и $k \in N_0$, СГК формирует вектор управляющего гироскопического момента $\mathbf{M}_k^g(t) = -h_g \mathbf{A}_h(\beta(t)) \mathbf{u}_k^g(t); \dot{\beta}(t) = \mathbf{u}_k^g(t),$ где прямоугольная матрица $\mathbf{A}_h(\beta) = \partial \mathbf{h}(\beta)/\partial \beta$.

Пусть в ССК, вращающейся относительно ИСК с вектором угловой скорости $\boldsymbol{\omega}(t) \equiv \{\omega_i(t)\}, i = 1 \div 3, 3$ адан вектор $\mathbf{a}(t) \equiv \{a_i(t)\}$. В ИСК этот вектор отображается в виде $\mathbf{a}^{i}(t) \equiv \{a_i^{i}(t)\}$. Угловое положение ССК относительно ИСК определяется кватернионом $\Lambda = (\lambda_0, \lambda)$, $\lambda = \{\lambda_i\}$, который изменяется согласно кинематическому уравнению $\dot{\Lambda} = \Lambda \circ \boldsymbol{\omega}/2$. Далее применяется вектор модифицированных параметров Родрига (МПР) $\boldsymbol{\sigma} = \{\sigma_i\} = \mathbf{e} \operatorname{tg}(\Phi/4)$ с ортом оси Эйлера \mathbf{e} и угла Φ собственного поворота, который однозначно связан с кватернионом Λ прямыми $\boldsymbol{\sigma} = \lambda/(1+\lambda_0)$ и обратными $\lambda_0 = (1-\sigma^2)/(1+\sigma^2), \lambda = 2\boldsymbol{\sigma}/(1+\sigma^2)$ соотношениями. Предполагая отсутствие всех внешних возмущений в дальнем космосе, модель пространственного движения КРМ при отображении на оси ССК принимается в виде

$$\mathbf{r}_{r}^{*} + \boldsymbol{\omega} \times \mathbf{r}_{r} = \mathbf{v}_{r}; \quad \mathbf{v}_{r}^{*} + \boldsymbol{\omega} \times \mathbf{v}_{r} = \mathbf{w}, \quad \mathbf{\Lambda} = \mathbf{\Lambda} \circ \boldsymbol{\omega}/2; \qquad \mathbf{J} \dot{\boldsymbol{\omega}} + \boldsymbol{\omega} \times \mathbf{G}^{\circ} = \mathbf{M}^{\mathsf{g}}, \tag{1}$$

где $\mathbf{a}^{*}(t) \equiv \partial \mathbf{a} / \partial t$ является локальной производной вектора $\mathbf{a}(t)$ по времени в ССК. Здесь первые два уравнения с векторами положения **г**, и скорости **V**, описывают поступательное движение КРМ (*robot*, нижний индекс *r*), где вектор $\mathbf{w} = \{\mathbf{w}_i\} = \mathbf{P}/\mathbf{m}$ является управляющим ускорением, а вторые два уравнения представляют управляемое вращательное движение КРМ с тензором инерции **J**, где $\mathbf{G}^{\circ} = \mathbf{J}\boldsymbol{\omega} + \mathbf{H}$ является вектором КМ системы твердых тел. Будем для простоты считать, что в ИСК поступательное движение ПКО с векторами положения \mathbf{r}_t^1 и скорости \mathbf{v}_t^1 (target, нижний индекс t) является прямолинейным и равномерным, а его вращательное движение происходит вокруг фиксированного в ИСК орта е^{*m*}_t вектора угловой скорости. В ССК векторы дальности Δr до цели и рассогласования Δv между скоростями КРМ и ПКО вычисляются по соотношениям $\Delta \mathbf{r} = \mathbf{r}_t - \mathbf{r}_r$ и $\Delta \mathbf{v} = \mathbf{v}_t - \mathbf{v}_r$ соответственно. Завершение сближения КРМ с ПКО начинается при дальности ∆г; ≈ 500 м, когда КРМ располагается внутри конуса с началом в центре масс ПКО, осью симметрии по отрицательному направлению орта скорости \mathbf{v}_{t}^{1} цели и углом полураствора 60 град. Задача состоит в синтезе законов наведения и управления движением КРМ, при которых робот за заданное время сближается с целью до дальности $\Delta r_{\rm f} \approx 30$ м, когда орт e_x его бортовой видеокамеры становится параллельным орту \mathbf{e}_t^{ω} вектора угловой скорости ПКО, и стабилизации такого положения КРМ относительно подвижной цели с точностью ≈0,3 м.

2. Законы пространственного наведения

В ИСК модель поступательного движения КРМ принимает классический вид $\dot{\mathbf{r}}_r^{_{l}} = \mathbf{v}_r^{_{l}}$; $\dot{\mathbf{v}}_r^{_{l}} = \mathbf{w}^{_{l}}$, где вектор ускорения $\mathbf{w}^{_{l}} = \mathbf{w}^{_{l}}(t) = \mathbf{\Lambda}(t) \circ \mathbf{w} \circ \widetilde{\mathbf{\Lambda}}(t)$ представлен в ИСК с помощью кватерниона $\mathbf{\Lambda}(t)$. При отсутствии вращения ($\boldsymbol{\omega} = \mathbf{0}$) ориентация КРМ в ИСК определяется постоянным кватернионом $\mathbf{\Lambda}_*$; ССК имеет фиксированное угловое положение в исходной ИСК и, следовательно, по существу является локальной ИСК, развернутой относительно исходной. С целью упрощения реализации требуемого вектора ускорения \mathbf{w} с помощью ДУ в ССК принимается следующая стратегия построения законов наведения КРМ, состоящая из трех этапов: 1) разгон робота с постоянным вектором линейного ускорения \mathbf{w} в ССК при фиксированной ориентации КРМ в исходной ИСК в процессе его поступательного движения; 2) прямолинейное равномерное движение центра масс КРМ с одновременным разворотом его корпуса для ориентации

орта \mathbf{e}_x бортовой видеокамеры в ИСК параллельно известному орту \mathbf{e}_t^{ω} вектора угловой скорости ПКО; 3) поступательное движение центра масс КРМ в локальной ИСК по траектории векторного сплайна соответствующего порядка с точным выполнением заданных краевых условий.

Синтез закона углового наведения КРМ (поворотного маневра) на некотором интервале времени $t \in [t_i^p, t_f^p]$ с заданными краевыми условиями:

$$\mathbf{\Lambda}(t_{i}^{p}) = \mathbf{\Lambda}_{i}; \mathbf{\omega}(t_{i}^{p}) = \mathbf{\omega}_{i}; \mathbf{\varepsilon}(t_{i}^{p}) = \mathbf{\varepsilon}_{i}; \quad \mathbf{\Lambda}(t_{f}^{p}) = \mathbf{\Lambda}_{f}; \mathbf{\omega}(t_{f}^{p}) = \mathbf{\omega}_{f}; \mathbf{\varepsilon}(t_{f}^{p}) = \mathbf{\varepsilon}_{f}; \dot{\mathbf{\varepsilon}}(t_{f}^{p}) = \dot{\mathbf{\varepsilon}}_{f};$$

выполняется при ограничениях на модули векторов его угловой скорости $\omega(t)$, углового ускорения $\varepsilon(t)$ и производной $\dot{\varepsilon}(t)$ по времени. При балансе СУД КРМ по вектору КМ \mathbf{G}° с условием $\mathbf{G}^{\circ} \equiv \mathbf{0}$ модель динамики принимает вид $\dot{\omega} = \varepsilon$ с вектором углового ускорения $\varepsilon = \mathbf{J}^{-1}\mathbf{M}^{g}$, а модель углового движения – кинематическое представление $\dot{\Lambda} = \Lambda \circ \omega/2$; $\dot{\omega} = \varepsilon$; $\dot{\varepsilon} = \varepsilon^{*} = \mathbf{v}$. Разработанный метод синтеза законов углового наведения КА, основанный на необходимом и достаточном условии разрешимости классической задачи Дарбу, представлен в [3,4]. Здесь этот метод применяется для пространственного углового наведения КРМ.

3. Законы управления пространственным движением

Пусть задан закон углового наведения КРМ $\Lambda^{p}(t), \omega^{p}(t), \dot{\omega}^{p}(t) = \varepsilon^{p}(t)$ в ИСК. Кватерниону $\mathbf{E} = (e_{0}, \mathbf{e}) = \widetilde{\Lambda}^{p} \circ \Lambda$ с вектором $\mathbf{e} = \{e_{i}\}$ соответствует вектор параметров Эйлера $\mathbf{E} = \{e_{0}, \mathbf{e}\}$ и матрица погрешности $\mathbf{C}^{e} = \mathbf{I}_{3} - 2[\mathbf{e} \times]\mathbf{Q}_{e}^{t}$, где $\mathbf{Q}_{e} = \mathbf{I}_{3}e_{0} + [\mathbf{e} \times]$. После дискретной фильтрации измеренных с периодом T_{q} значений вектора углового рассогласования $\varepsilon_{l} = -2e_{0l}\mathbf{e}_{l}, \quad l \in \mathbb{N}_{0}$, формируются значения вектора $\varepsilon_{k}^{f}, k \in \mathbb{N}_{0}$, цифрового закона управления СГК с периодом T_{u} :

 $\mathbf{g}_{k+1} = \mathbf{B}\mathbf{g}_k + \mathbf{C}\mathbf{\varepsilon}_k^{\mathrm{f}}; \quad \widetilde{\mathbf{m}}_k = \mathbf{K}\mathbf{g}_k + \mathbf{P}\mathbf{\varepsilon}_k^{\mathrm{f}}; \quad \mathbf{M}_k^{\mathrm{g}} = \mathbf{\omega}_k \times \mathbf{G}_k^{\mathrm{o}} + \mathbf{J}(\mathbf{C}_k^{\mathrm{e}}\mathbf{\varepsilon}_k^{\mathrm{p}} + [\mathbf{C}_k^{\mathrm{e}}\mathbf{\omega}_k^{\mathrm{p}} \times]\mathbf{\omega}_k + \widetilde{\mathbf{m}}_k).$ Здесь $\mathbf{C}_k^{\mathrm{e}} = \mathbf{C}^{\mathrm{e}}(\mathbf{E}_k), \quad \mathbf{G}_k^{\mathrm{o}} = \mathbf{J}\mathbf{\omega}_k + \mathbf{H}_k$ и используются диагональные матрицы $\mathbf{K}, \quad \mathbf{B}, \quad \mathbf{C} \quad \mathbf{u} \quad \mathbf{P}.$ Далее вектор $\mathbf{M}_k^{\mathrm{g}}$ с помощью явного закона распределения команд между 4 ГД «пересчитывается» в столбец $\mathbf{u}_k^{\mathrm{g}} = \{\mathbf{u}_{pk}^{\mathrm{g}}\}$ сигналов управления ГД, которые фиксируются на полуинтервалах цифрового управления СГК с периодом T_u для формирования его управляющего момента $\mathbf{M}_k^{\mathrm{g}}(t)$.

Рис. 3. Сцена пространственного сближения КРМ (синий цвет) с ПКО (зеленый цвет)

При законе наведения $\Delta \mathbf{r}^{p}(t), \Delta \mathbf{v}^{p}(t), \mathbf{w}^{p}(t)$ в поступательном движении КРМ выполняется фильтрации измеренных с периодом T_{p} значений вектора позиционного рассогласования $\mathbf{\varepsilon}_{s} = (\Delta \mathbf{r}_{s}^{p} - \Delta \mathbf{r}_{s}), s \in \mathbb{N}_{0}$ и с периодом T_{u}^{e} формируются значения вектора $\mathbf{\varepsilon}_{r}^{f}, r \in \mathbb{N}_{0}$, которые применяются в законе управления вектором **Р** тяги двигательной установки: $\mathbf{g}_{k+1} = \mathbf{B}\mathbf{g}_{k} + \mathbf{C}\mathbf{\varepsilon}_{k}^{f}; \mathbf{\widetilde{w}}_{k} = \mathbf{K}\mathbf{g}_{k} + \mathbf{P}\mathbf{\varepsilon}_{k}^{f}; \mathbf{P}_{k} = \{\mathbf{P}_{ik}\} \equiv \mathbf{P}_{k}^{e} = \mathbf{m}(\mathbf{w}_{k}^{p} + \mathbf{\widetilde{w}}_{k})$. Далее вектор \mathbf{P}_{k} тяги ДУ распределяется между 8 РД при их цифровом управлении с периодом T_{u}^{e} .

Результаты имитации

При компьютерной имитации рассматривался космический робот-манипулятор с массой m = 1000 кг и тензором инерции **J** = diag{812;587;910} кг м². Было принято, что каждый из восьми РД в составе ДУ имеет максимальное значение тяги $P^m = 0,5$ H, расположение РД в ССК определяется плечами $b_x = 1$ м, $b_y = 0,7$ м, $b_z = 0,6$ м и углами их установки $\alpha^e = 35,25$ град и $\beta^e = 45$ град (рис. 1). При этом максимальная тяга ДУ по каждой из осей ССК одинакова и составляет 1,15 H. Каждый из четырех ГД в составе СГК (рис. 2) имеет модуль собственного КМ $h_g = 30$ Нмс и период цифрового управления $T_u = 0,25$ с.

Рис.5. Закон наведения КРМ в поступательном движении с разворотом его корпуса

Пусть в момент времени $t = t_i = 0$ КРМ неподвижен в ИСК ($\mathbf{r}_r(t_i) = \mathbf{0}, \mathbf{v}_r(t_i) = \mathbf{0}$) и его ССК совпадает с ИСК ($\mathbf{\Lambda}(t_i) = \mathbf{1}, \mathbf{\omega}(t_i) = \mathbf{0}$, орт направления на цель $\mathbf{c}(t_i) = \{C_{\varphi}, S_{\varphi}, 0\}$ при $\varphi = 20$ град и начальная дальность до цели $\Delta \mathbf{r}(t_i) = \Delta \mathbf{r}_i = 500$ м (рис. 3). Поступательное движение цели в ИСК происходит с постоянным вектором скорости $\mathbf{v}_t^{\mathrm{I}} = \{-0, 05; 0, 05; 0, 075\}$ м/с и пассивный космический объект вращается в ИСК вокруг орта $\mathbf{e}_t^{\omega} = \{-0, 608; 0, 228; 0, 760\}$. В момент времени $t = t_f = 4250$ с (1,2 ч) требуется

обеспечить сближение КРМ с целью при заданной дальности $\Delta \mathbf{r}(t_f) = \Delta \mathbf{r}_f = 30$ м и параллельности орта \mathbf{e}_{r} орту \mathbf{e}_{r}^{ω} , а также последующую стабилизацию такого положения КРМ относительно ПКО с точностью ≈ 0,1 м.

Рис. 6. Ошибки стабилизации дальности

Рис. 7. Компоненты вектора тяги ДУ

В соответствии принятой с стратегией выполнен синтез закона наведения КРМ с тремя этапами:

1) при $t \in [0; 1420)$ с выполняется разгон робота с постоянным вектором ускорения w в ССК, достигаемая им позиция представлена точкой А на рис. 3;

2) при $t \in [1420; 1520)$ с КРМ совершает равномерное прямолинейное движение с одновременным разворотом его корпуса для ориентации орта \mathbf{e}_x параллельно орту е, достигаемая им позиция представлена точкой В на рис. 3, а закон углового наведения – на рис. 4, где $\boldsymbol{\varepsilon} = \boldsymbol{\varepsilon}^{p}(t)$, $\boldsymbol{\omega} = \boldsymbol{\omega}^{p}(t)$ и $\boldsymbol{\sigma} = \boldsymbol{\sigma}^{p}(t)$;

3) при *t* ∈ [1520; 4250) с КРМ выполняет поступательное движение по траектории векторного сплайна шестого порядка с точным выполнением краевых условий $\Delta r(t_f) = 30$ м, $\Delta v(t_f) = 0$ и $w(t_f) = 0$ в точке С (рис. 3). Закон наведения КРМ в поступательном движении с разворотом его корпуса представлен на рис. 5, где $\Delta \mathbf{r} = \Delta \mathbf{r}^{p}(t)$, $\Delta \mathbf{v} = \Delta \mathbf{v}^{p}(t)$ и $w = w^{p}(t)$. На интервале времени $t \in [4250; 5000]$ с дополнительно предъявляется требование стабилизации положения КРМ относительно ПКО с точностью ≈0,3 м. На рис. 4 и 5 показаны модули соответствующих векторных функций.

Будем считать, что измерение ориентации КРМ выполняется астроинерциальной системой определения углового положения (СОУП). Погрешности ее выходных дискретных сигналов с периодом $T_q = 0,125$ с содержат центрированный гауссовский шум среднеквадратичным отклонением (СКО) $\sigma^{a} = 1$ угл. сек. После дискретной co

фильтрации измеренных значений вектора углового рассогласования формируются значения вектора ε_k^f в цифровом законе управления СГК с периодом $T_u = 0,25$ с. Как показано в [5], для синтезированного закона углового наведения КА с инерционными параметрами, соответствующими КРМ, достигается точность стабилизации не хуже нескольких угловых секунд, что приемлемо для решения данной задачи.

Пусть дальность до цели измеряется лазерными дальномерами КРМ с периодом $T_p = 1$ с. Для оценки точности стабилизации закона наведения КРМ в поступательном движении предположим, что СКО погрешности измерения дальности $\sigma^b = 0,025$ м при $\Delta r(t) \ge 300$ м и период управления ДУ $T_u^e = 8$ с. По завершению разворота корпуса КРМ при $\Delta r(t) < 300$ м СКО такой погрешности измерения $\sigma^b = 0,01$ м и период управления ДУ $T_u^e = 4$ с. Погрешности стабилизации дальности $\delta \Delta r_i$ при реализации указанного закона наведения, полученные при компьютерной имитации, представлены на рис. 6. На рис. 7 приведены изменения компонентов P_i вектора тяги ДУ при цифровом управлении с дискретностью по уровню $d^e = 0,05$ Н. На рис. 8 представлены изменения компонентов вектора погрешности дальности при завершении сближения и последующей стабилизации положения КРМ относительно цели.

Рис. 8. Погрешности дальности при завершении сближения и стабилизации КРМ

Заключение

Разработанная стратегия пространственного наведения и управления движением КРМ апробированная в задаче завершения сближения свободнолетающего КРМ с вращающимся ПКО (целью) в дальнем космосе.

Работа выполнена при поддержке РФФИ (гранты 17-08-01708, 17-48-630637) и Отделения ЭММПУ РАН (программа фундаментальных исследований № 13).

Библиографический список

 Somov, Ye.I., Platonov, V.N., Sorokin, A.V. Steering the control moment gyroscope clusters onboard high-agile spacecraft // Automatic Control in Aerospace. Oxford: Elsevier Ltd. – 2005. – Vol. 1. – P. 137-142.

2. Сомов, Е.И. Анализ сингулярных состояний и синтез явных законов настройки гирокомплексов кратных схем [Текст] / Е.И. Сомов // Гироскопия и навигация. – 2013. – № 1(80). – С. 134-148.

3. Сомов, Е.И. Аналитический синтез программного гиросилового управления свободнолетающим космическим роботом [Текст] / Е.И. Сомов // Проблемы управления. – 2006. – № 6. – С. 72-78.

4. Somov, Ye., Butyrin, S., Somova, T. Synthesis of the vector spline guidance laws for a landsurvey satellite at scanning observation and rotational maneuvers // Proceedings of International Conference "Stability and Oscillations of Nonlinear Control Systems". – 2016. – P. 1-4.

5. Somov, Ye., Butyrin, S., Somov, S. Attitude guidance, navigation and robust control of an agile land-survey satellite// Proceedings of 8th International Conference on Recent Advances in Space Technologies. – 2017. – P. 443-448.