Сомов Е.И., Бутырин С.А., Макаров В.П.

НАВЕДЕНИЕ И ГИРОСИЛОВОЕ УПРАВЛЕНИЕ ОРИЕНТАЦИЕЙ СПУТНИКА ПРИ ПЛОЩАДНОМ СКАНИРУЮЩЕМ ЗЕМЛЕОБЗОРЕ С РЕВЕРСНЫМИ ПРИЕМНИКАМИ ИЗОБРАЖЕНИЯ

Введение

Рассматривается задача синтеза законов наведения, алгоритмов цифрового гиросилового управления ориентацией космического аппарата (КА) и динамического анализа системы управления ориентацией (СУО) КА при площадном землеобзоре. Орбитальное движение спутника считается известным, перекрытие смежных полос получаемого изображения Земли должно быть не меньше заданного. Оптико-электронные преобразователи (ОЭП) в фокальной плоскости (ФП) телескопа обладают режимом реверса, т.е. допускают как прямое, так и обратное направления продольного движения оптического изображения. При чередования поворотных маневров (ПМ) спутника и ортодромических сканирующих маршрутов (СМ) съемки управление ориентацией КА выполняется силовым гироскопическим кластером (СГК) на основе 4 гиродинов (ГД) по сигналам бесплатформенной инерциальной навигационной системы (БИНС) и разгрузкой накопленного кинетического момента (КМ) магнитным приводом (МП).

1. Математические модели и постановка задачи

Используются стандартные системы координат (СК) – инерциальная (ИСК) и геодезическая гринвичская (ГСК) с началом в центре Земли, орбитальная (ОСК $Ox^{\circ}y^{\circ}z^{\circ}$) и связанная с корпусом КА (ССК Oxyz) СК с началом в его центре масс О. Вводятся телескопная СК (ТСК) с началом в центре S оптического проектирования, СК поля изображения (ПСК) с началом в ФП телескопа и визирная СК (ВСК) с началом в центре набора ОЭП. Ориентация ССК в ИСК определяется кватернионом **Λ**, применяются векторы угловой скорости **ω** и углового ускорения ε , а также обозначения col(·) = {}, line(·) = [·], (·)^t, [**a**×] и \circ, \sim для векторов, матриц и кватернионов. Углы ориентации ССК относительно ОСК по крену ϕ_1 , рысканию ϕ_2 и тангажу ϕ_3 используются в последовательности 312. В СУО применяется СГК на основе четырех ГД по схеме 2-*SPE* (2 Scissored Pair Ensemble). Свяжем с вектором кинетического момента (КМ) каждого $p=1\div4$ ГД орт $\mathbf{h}_p(\beta_p)$, положение которого определяется углом β_p . При столбце $\boldsymbol{\beta} = \{\beta_p\}$ вектор нормированного КМ СГК $\mathbf{h}(\boldsymbol{\beta}) = \Sigma \mathbf{h}_p(\beta_p)$ и вектор управляющего

момента СГК $\mathbf{M}^{g} = -h_{g}\mathbf{A}_{h}(\boldsymbol{\beta})\mathbf{u}^{g}; \dot{\boldsymbol{\beta}} = \mathbf{u}^{g}$, где столбец $\mathbf{u}^{g} = \{\mathbf{u}_{p}^{g}\}$, матрица $\mathbf{A}_{h}(\boldsymbol{\beta}) = \partial \mathbf{h}/\partial \boldsymbol{\beta}$ и h_{g} .представляет собственный КМ каждого ГД. Модель углового движения КА учитывает упругость его конструкции и имеет вид:

 $\dot{\mathbf{A}} = \mathbf{A} \circ \boldsymbol{\omega}/\mathbf{2} ; \ \mathbf{J}\dot{\boldsymbol{\omega}} + \mathbf{D}_{q}\ddot{\mathbf{q}} = -[\boldsymbol{\omega} \times]\mathbf{G} + \mathbf{M}^{g} + \mathbf{M}^{m} + \mathbf{M}^{d} ; \ \mathbf{D}_{q}^{t}\dot{\boldsymbol{\omega}} + \mathbf{A}^{q}\ddot{\mathbf{q}} = -\mathbf{A}^{q}(\mathbf{V}_{q}\dot{\mathbf{q}} + \mathbf{W}_{q}\mathbf{q}), \ (1)$ $\mathbf{A}^{q} = \operatorname{diag}\{\boldsymbol{\mu}_{j}\}, \quad \mathbf{V}_{q} = \operatorname{diag}\{\frac{\delta}{\pi}\boldsymbol{\Omega}_{j}^{s}\}, \quad \mathbf{W}_{q} = \operatorname{diag}\{(\boldsymbol{\Omega}_{j}^{s})^{2}\}; \quad \mathbf{G} = \mathbf{J}\boldsymbol{\omega} + \mathbf{H} + \mathbf{D}_{q}\dot{\mathbf{q}}, \quad \mathbf{H} = h_{g} \mathbf{h}(\boldsymbol{\beta});$ вектор механического момента магнитного привода (МП) $\mathbf{M}^{m} = -\mathbf{L} \times \mathbf{B}$, где вектор \mathbf{L} электромагнитного момента МП и вектор индукции В магнитного поля Земли определены в ССК; вектор M^d представляет внешние возмущающие моменты. Вектор M^{g} управляющего момента СГК формируется в виде $M^{g} = -H^{*}$, где $(\cdot)^{*}$ – символ локальной производной по времени. При моделировании корпуса КА в виде свободного $(M^{d} = 0)$ твердого тела с тензором инерции J и балансе СУО по вектору КМ $G = J\omega + H \equiv G^{\circ} = 0$ модель динамики принимает вид $\dot{\omega} = \varepsilon \equiv J^{-1}M^{g}$, а модель углового движения КА (1) – кинематическое представление $\dot{\Lambda} = \Lambda(\circ \omega/2; \dot{\omega} = \varepsilon; \dot{\varepsilon} = \varepsilon^* = v$. Модули векторов $\omega(t)$, $\varepsilon(t)$ и $\varepsilon^*(t)$ ограничены: $|\omega(t)| \leq \overline{\omega}$, $|\varepsilon(t)| \leq \overline{\varepsilon}$ и $|\varepsilon^*(t)| \leq \overline{\varepsilon}^*$, что обусловлено ограниченностью областей вариации векторов КМ и управляющего момента СГК, а также допустимым темпом его изменения. Далее применяется вектор модифицированных параметров Родрига (МПР) $\sigma = \{\sigma_i\} = e \operatorname{tg}(\Phi/4)$ с ортом Эйлера е и углом Ф собственного поворота. Вектор σ однозначно связан с кватернионом Λ и обратными $\lambda_0 = (1 - \sigma^2)/(1 + \sigma^2)$, $\lambda = 2\sigma/(1 + \sigma^2)$ $\sigma = \lambda/(1+\lambda_0)$ прямыми соотношениями.

Для сканирующей съемки программы изменения кватерниона Λ и вектор угловой скорости ω вычисляются с применением ГСК, ТСК, ПСК и ВСК на основе сложения движений телескопа с учетом пространственного движения КА, координат наблюдаемых наземных объектов, вращения Земли и множества других факторов. Для произвольных СМ разработаны алгоритмы наведения КА в виде набора гладко сопряженных векторных сплайнов МПР $\sigma(t)$ 7-го порядка [1]. Здесь возникает задача синтеза закона наведения КА при его ПМ на интервале времени $t \in T_p \equiv [t_i^p, t_f^p]$ с краевыми условиями:

$$\mathbf{\Lambda}(t_{i}^{p}) = \mathbf{\Lambda}_{i}; \boldsymbol{\omega}(t_{i}^{p}) = \boldsymbol{\omega}_{i}; \boldsymbol{\varepsilon}(t_{i}^{p}) = \boldsymbol{\varepsilon}_{i}; \quad \mathbf{\Lambda}(t_{f}^{p}) = \mathbf{\Lambda}_{f}; \boldsymbol{\omega}(t_{f}^{p}) = \boldsymbol{\omega}_{f}; \boldsymbol{\varepsilon}(t_{f}^{p}) = \boldsymbol{\varepsilon}_{f}; \boldsymbol{\varepsilon}^{*}(t_{f}^{p}) = \boldsymbol{\varepsilon}_{f}; \quad (2)$$

Для кинематической модели углового движения КА и ограничениях на модули векторов $\omega(t)$, $\varepsilon(t)$ и $\varepsilon^*(t) = \dot{\varepsilon}(t)$ разработан [2] аналитический метод синтеза закона наведения КА при его ПМ на интервале времени T_p с краевыми условиями (2), основанный на необходимом и достаточном условии разрешимости задачи Дарбу. Здесь функции $\omega(t)$, $\varepsilon(t)$, $\varepsilon^*(t) = \dot{\varepsilon}(t)$ представляются в аналитическом виде композицией гладко сопряженных векторных сплайнов различных порядков. Измерение ориентации КА выполняется БИНС в моменты времени t_l с периодом T_q , $t_{l+1} = t_l + T_q$, $l \in N_0 \equiv [0,1,2,...)$. Будем считать, что в моменты времени t_k , $k \in N_0$ с периодом T_u формируется цифровое управление ГД, а в моменты времени t_r , $r \in N_0$ с периодом $T_u^m >> T_u$ – цифровое управление МП. В статье решаются следующие задачи: (i) планирование площадного землеобзора в виде последовательности чередования ортодромических СМ с поворотными маневрами между ними и синтез векторного сплайнового закона наведения спутника; (ii) анализ точностных характеристик СУО КА при площадном землеобзоре.

2. Планирование площадного землеобзора

Задача площадного землеобзора состоит в покрытии заданной площадки на поверхности Земли с географическим центром $C(L_c, B_c, H_c)$ последовательностью частично перекрывающихся сканирующих маршрутов (ПСМ, сканов). Здесь при планировании исходными данными являются размер $S = a \times b$ площадки длиной a и шириной b, параметры орбитального движения КА, характеристики телескопа и ОЭП с возможностью реверса, ограничения на кинематические параметры углового движения спутника. Допускается отклонение ортодромических ПСМ по азимуту на углы до $\pm \pi/9$ и $(1+1/9)\pi$ от трассы. Основные этапы решения данной задачи: определение требуемого числа сканов N и продольной скорости движения изображения (СДИ) в ФП телескопа при выполнении ПСМ; синтез законов наведения КА для выполнения центрального и боковых сканов. Центральным считается скан, центр которого совпадает с центром C площадки, а плоскость y° О z° ОСК в момент времени сканирования t_c проходит через точку C. Оценка числа сканов такова: $N = 2b(1-p/50)/(s_0 + s_m)$, где s_0 и s_m – размеры проекций центральной линейки ОЭП на поверхности Земли при минимальном (в момент времени t_c) и максимальном удалении от центра C площадки, $p \in [5,10]$ – перекрытие

сканов в процентах. Максимальное удаление соответствует ограничениям на угол тангажа или дальность D съемки. Прогноз потребной продольной СДИ V сⁱ условного центрального скана (ЦС) выполняется по варианту трассовой съемки. При этом получаются начальные оценки длительности этого скана $T_c = 2a f_e / (DV_c^i)$, где $f_e - dv_c^i$ эквивалентное фокусное расстояние телескопа, и длительности площадного землеобзора $T_a = NT_c + (N-1)T_r$, где $T_r = T_c/3$ – прогнозируемая длительность ПМ спутника между ПСМ. Определяются геодезические координаты начала $C_{\rm i}$ и конца $C_{\rm f}$ центрального скана, равноотстоящие от точки C на величину a/2 с азимутом A в прямом и противоположенном направлениях в моменты времени $t_{ci} = t_c - T_c / 2$ и $t_{cf} = t_c + T_c / 2$ соответственно. Далее значения t_{ci} , t_{cf} , V_c^i , T_c и азимута A итерационно уточняются с использованием численной имитации пространственного движения КА при выполнении ортодромического ПСМ на интервале времени $t \in [t_{ci}, t_{cf}]$. В результате обеспечивается допустимое отклонение длины ЦС от требуемого значения и получаются характеристики ЦС на земной поверхности: длина a_c и ширина d_c по центру ПСМ, площадь покрытия, моменты времени начала и конца ЦС, геодезические координаты центра и угловых точек контура условного ЦС. Ортодромический ПСМ, смежный условному ЦС, называется боковым сканом (БС). Расчет БС выполняется аналогично, но проводятся дополнительные итерации для назначения положения его центра С_b. Начальные координаты центра С_h определяется смещением на поверхности Земли от точки С на расстояние $d^i = \pm \Delta d \Delta n / N$ по азимуту $A \pm \pi / 2$. Здесь знаки (+) и (-) соответствуют правым и левым БС по полету КА, $\Delta d = d_c^m - d_c$ представляет разность между шириной d_c ЦС и его шириной d_c^m , рассчитанной при максимальной дальности, и Δn – разность по модулю между номерами текущего бокового и центрального сканов.

Рис. 1. Векторный сплайновый закон наведения

Рис. 2. Маршруты на карте

Оценка момента времени t_{bc} сканирования центра C_b такова: $t_{bc} = t_c + T_c + T_r$. Назначается начальное значение продольной СДИ БС $V_{bc}^{i} = \pm V_{c}^{i}/2$, где знаки (+) и (-) соответствуют нечетным и четным номерам таких сканов. Далее значения СДИ V_{bc}^{i} и других параметров БС итерационно уточняются. При синтезе последующих БС все расчеты ведутся отсчетами от предыдущего БС, который играет роль ЦС. Если число сканов *N* нечетно, то центральный условный и фактический сканы совпадают. При четном *N* положение центра фактического скана смещается на величину $d_c/2$ по $A-\pi/2$ азимуту а момент времени его сканирования изменяется на величину $\Delta t_c = -(T_c + T_r)/2$. с При этом центр *С* площадки будет располагаться в перекрытии двух скановв её центральной части. Рис. 2 представляет на карте

проекции сканов и следа линии визирования телескопа, полученные при планировании двух одиночных СМ и площадного землеобзора окрестностей Стамбула для КА на солнечно-синхронной орбите высотой 720 км и наклонением 98,27 град, когда допускается отклонение линии визирования от надира в конусе с углом полу-раствора 40 град. На рис. 1 приведен векторный сплайновый закон наведения КА, соответствующий

разработанному плану землеобзора. Здесь углы ϕ_i ориентации ССК в ОСК, компоненты векторов $\sigma(t)$, $\omega(t)$ и $\varepsilon(t)$.

Заданная площадка земной поверхности имеет размеры 200 × 203 км, геодезические координаты её центра 40,5 град СШ, 29,2 град ВД. Первый СМ Анталья начинается в точке с геодезическими координатами 36,68 град СШ, 30,65 град ВД и выполняется с выравниванием продольной СДИ. На поверхности Земли этот сканирующий маршрут имеет длину 54,78 км и ширину 46,87 км. Далее с помощью пяти ортодромических ПСМ и ПМ между ними выполняется площадной землеобзор. Завершающий СМ Варна трассовой съемки начинается в точке с геодезическими координатами 43,21 град СШ, 27,9 град ВД. На поверхности Земли этот сканирующий маршрут имеет длину 135,92 км и ширину 48,75 км. Подробности рассчитанного плана представлены в [3].

3. Цифровое управление ориентацией спутника

Пусть задано программное угловое движение КА $\Lambda^{p}(t), \omega^{p}(t), \omega^{p}(t) = \varepsilon^{p}(t)$ в ИСК. Кватерниону рассогласования $\mathbf{E} = (e_{0}, \mathbf{e}) = \tilde{\Lambda}^{p} \circ \Lambda$ с вектором $\mathbf{e} = \{e_{i}\}$ соответствует вектор параметров Эйлера $\mathbf{E} = \{e_{0}, \mathbf{e}\}$, матрица погрешности $\mathbf{C}^{e}(\mathbf{E}) = \mathbf{I}_{3} - 2[\mathbf{e}\times]\mathbf{Q}_{e}^{t}$, $\mathbf{Q}_{e} = \mathbf{I}_{3}e_{0} + [\mathbf{e}\times]$ и вектор погрешности ориентации $\delta \boldsymbol{\phi} = \{\delta \phi_{i}\} = \{2e_{0}e_{i}\}$. Вектор рассогласования по угловым скоростям вычисляется по формуле: $\delta \boldsymbol{\omega} = \{\delta \omega_{i}\} = \boldsymbol{\omega} - \mathbf{C}^{e} \boldsymbol{\omega}^{p}(t)$. Дискретная фильтрация вектора углового рассогласования $\boldsymbol{\epsilon}_{k}$ $I = -\delta \boldsymbol{\phi}_{l}$ выполняется с периодом T_{q} , далее значения вектора $\boldsymbol{\varepsilon}_{k}^{f}$ применяются в рекуррентном дискретном законе управления кластером ГД [3]:

$$\mathbf{g}_{k+1} = \mathbf{B} \, \mathbf{g}_k + \mathbf{C} \, \boldsymbol{\epsilon}_k^{\mathrm{f}} ; \; \widetilde{\mathbf{m}}_k = \mathbf{K} \, \mathbf{g}_k + \mathbf{P} \, \boldsymbol{\epsilon}_k^{\mathrm{f}} ; \; \mathbf{M}_k^{\mathrm{g}} = \boldsymbol{\omega}_k \times \mathbf{G}_k^{\mathrm{o}} + \mathbf{J} (\mathbf{C}_k^{\mathrm{e}} \boldsymbol{\epsilon}_k^{\mathrm{p}} + [\mathbf{C}_k^{\mathrm{e}} \boldsymbol{\omega}_k^{\mathrm{p}} \times] \boldsymbol{\omega}_k + \widetilde{\mathbf{m}}_k) , \quad (3)$$

где при матрицах **K**, **B**, **C**, **P**, **C**^e_k = **C**^e($\boldsymbol{E}(t_k)$) вектор **G**^o_k = **J** $\boldsymbol{\omega}_k$ + **H**_k. Вектор управляющего момента СГК **M**^g_k (3) формируется с использованием явной функции настройки [4] и «пересчитывается» в вектор **u**^g_k командных угловых скоростей гиродинов.

4. Результаты компьютерной имитации

В рамках модели (1) рассматривался КА массой 1000 кг с тензором инерции

J = diag{812;587;910} кг м² и низшими частотами колебаний его конструкции 1 Гц; каждый ГД имеет КМ $h_g = 30$ Нмс. Для имитации работы СУО КА при выполнении указанного задания применялись периоды дискретности: $T_q = 1/8$ с; $T_u = 1/4$ с для СМ Анталья, Варна; $T_u = 1/8$ с для ПСМ землеобзора; $T_u^m = 8$ с для цифрового управления МП. Учитывались погрешности БИНС с СКО $\sigma^n = 1$ угл. сек $\sqrt{\Gamma_{II}}$ на частоте 8 Гц, дискретная фильтрация вектора углового рассогласования и цифровое управлении кластером ГД. Ошибки стабилизации углового движения КА и скорости ГД при площадном землеобзоре приведены на рис. 3, 4. В нижней части рис. 3 выделены временные интервалы ПСМ с указанием их номеров и направлений сканирования.

Рис. 3. Погрешности реализации землеобзора и угловые скорости гиродинов

Рис. 4. Погрешности реализации второго ПСМ и угловые скорости гиродинов

Заключение

В развитие [2] разработан новый метод планирования площадного землеобзора в виде последовательности ортодромических ПСМ с назначением фиксированных значений продольных СДИ на матрицах ОЭП с реверсом. В этом методе явно учитывается орбитальное движение КА и вращение Земли, что обеспечивает энергетическую экономичность СУО при выполнении землеобзора.

Работа выполнена при поддержке РФФИ (гранты 17-08-01708, 17-48-630637) и Отделения ЭММПУ РАН (программа фундаментальных исследований № 13).

Библиографический список

1. Somov, Ye., Butyrin, S., Somova, T. Analytical representation of guidance laws for land-survey satellite at scanning observation // Proceedings of 22th Saint Petersburg International Conference on Integrated Navigation Systems. – 2015. – P. 116-119.

2. Somov, Ye.I., Butyrin, S.A., Butko, A.V. Satellite gyromoment guidance at area landsurvey based on sequence of the scanning observation courses // Proceedings of 18th Saint Petersburg International Conference on Integrated Navigational Systems. – 2011. – P. 323-331.

3. Somov, Ye., Butyrin, S., Somov, S. Satellite guidance and gyromoment attitude control at an area scanning land-survey // Proceedings of 24th Saint Petersburg International Conference on Integrated Navigation Systems. – 2017. – P. 553-558.

4. Somov, Ye.I., Platonov, V.N., Sorokin, A.V. Steering the control moment gyroscope clusters onboard high-agile spacecraft // Automatic Control in Aerospace. Oxford: Elsevier Ltd. – 2005. – Vol. 1. – P. 137-142.