Дон Ч., Заболотнов Ю.М., Ван Ч.

МОДЕЛИРОВАНИЕ И АНАЛИЗ КОЛЕБАНИЙ ОРБИТАЛЬНОЙ ТРОСОВОЙ СИСТЕМЫ С АТМОСФЕРНЫМ ЗОНДОМ

Рассматривается моделирование и анализ динамики свободного движения орбитальной тросовой системы с атмосферным зондом после ее развертывания в вертикальное положение. Исследуются колебания, которые возникают при совместном действии гравитационных, аэродинамических и упругих сил. Анализ проводится с помощью математической модели, в которой трос представляется как совокупность материальных точек. Оценивается влияние на маятниковые колебания параметров троса, аэродинамического зонда и других характеристик тросовой системы.

Введение

Орбитальная тросовая система (ОТС) состоит из базового космического аппарата (КА), троса и атмосферного зонда. Атмосферный зонд представляет собой тело с увеличенным баллистическим параметром надувной или легкой складной конструкции. Ставится задача анализа маятниковых колебаний троса, влияющих на точность приведения ОТС в вертикальное положение. Для анализа производится построение дискретной многоточечной математической модели, учитывающей весомость троса, его жесткость, диссипативные силы внутри троса, аэродинамические и упругие силы. При задании упругих сил используется закон Гука с односторонней механической связью (трос не воспринимает сжимающих усилий). Рассматриваемая модель движения ОТС представляет собой модель с распределенными параметрами и позволяет исследовать колебания системы, возникающие за счет совместного влияния гравитационных, аэродинамических и упругих сил. Как было установлено в работе [1] при анализе более простых моделей движения, совместное влияние аэродинамических и упругих сил при достаточно большой длине троса приводит к возникновению так называемой «аэроградиентной» неустойчивости колебаний троса в плоскости орбиты центра масс системы.

Дискретная математическая модель движения тросовой системы с распределенными параметрами

При построении уравнений движения ОТС используются следующие системы координат (рисунок 1): 1) геоцентрическая система координат OXYZ; 2) геоцентрическая орбитальная подвижная система координат $OX_{O}Y_{O}Z_{O}$; 3) орбитальная подвижная система

координат $Cx_0y_0z_0$. Плоскость *OXY* геоцентрической системы координат *OXYZ* совпадает с плоскостью орбиты, ось *OX* направлена по линии узлов, ось *OZ* перпендикулярна плоскости орбиты и направлена по вектору кинетического момента центра масс системы, *OY* дополняет систему координат до правой. Ось *OX₀* системы координат $OX_0Y_0Z_0$ направлена по линии *OC*, где *C* – центр масс системы. Система координат $OX_0Y_0Z_0$ вращается относительно системы координат OXYZ с угловой скоростью $\dot{u} = du/dt$, где *u* - аргумент широты. Оси орбитальных подвижных систем координат $OX_0Y_0Z_0$ и $Cx_0y_0z_0$ параллельны.

Рисунок 1 – Системы координат

Уравнения движения совокупности *N* материальных точек с упругими связями записываются в виде системы обыкновенных дифференциальных уравнений [2]

$$\frac{d\vec{r}_k}{dt} = \vec{V}_k , \ m_k \frac{d\vec{V}_k}{dt} = \vec{F}_k , \tag{1}$$

где \vec{r}_k , \vec{V}_k и m_k – радиус-вектор, скорость и масса k-ой материальной точки; \vec{F}_k – равнодействующая сил, действующих на материальные точки, k = 1, 2, ...N.

В уравнениях движения (1) в качестве концевых тел рассматриваются материальные точки. Для дискретной математической модели (1) должны быть выполнены следующие условия: $M = \sum_{k=1}^{N} m_k$, $L = \sum_{k=1}^{N-1} \Delta L_k$, где M и L – масса и длина

троса, ΔL_k - расстояние между k -ой и k+1 -ой точками.

Учитывая основные силы, действующие на ОТС, запишем

$$\vec{F}_k = \vec{G}_k + \vec{R}_k + \vec{T}_k - \vec{T}_{k+1} + \vec{D}_k - \vec{D}_{k+1}, \qquad (2)$$

где \vec{G}_k – гравитационная сила, \vec{R}_k – аэродинамическая сила, \vec{T}_k и \vec{D}_k – сила натяжения троса и диссипативная сила, действующие между *k*-ой и *k*+1-ой точками и приложенные

к k-ой точке. При определении силы \vec{G}_k используется центральное ньютоновское гравитационное поле.

При диффузном отражении аэродинамическая сила \vec{R}_k имеет лишь составляющую в направлении скорости набегающего потока (силу лобового сопротивления), которая определяется следующим образом [1]

$$\vec{R}_k = -\frac{1}{2} C_R \rho_a S_k V_{ck} \vec{V}_{ck} \left| \sin(\alpha_k) \right|, \tag{3}$$

где $\vec{V_{ck}}$ – скорость центра симметрии *k*-ого цилиндра относительно атмосферы, $C_R \approx 2,2$ – коэффициент силы аэродинамического сопротивления цилиндра, $S_k = d_t \Delta L_k$ – характерная площадь элементарного цилиндра, d_t – диаметр троса, ρ_a – плотность атмосферы, α_k – угол атаки цилиндра. Скорость центра симметрии элементарного цилиндра и его угол атаки определяются по формулам

$$\vec{V}_{ck} = \frac{\vec{V}_{r,k} + \vec{V}_{r,k+1}}{2}, \quad \cos(\alpha_k) = \frac{\Delta \vec{L}_k \cdot \vec{V}_{ck}}{\Delta L_k \, V_{ck}}, \tag{4}$$

где $\vec{V}_{r,k} = \vec{V}_k - \vec{V}_{ak}$ – скорость относительно атмосферы *k*-ой точки, $\vec{V}_{ak} = \vec{\Omega}_a \times \vec{r}_k$ – скорость атмосферы в *k*-ой точке, $\Delta \vec{L}_k = \vec{r}_{k+1} - \vec{r}_k$, $\vec{\Omega}_a$ – вектор угловой скорости вращения атмосферы. Обычно принимают $\vec{\Omega}_a = \vec{\Omega}_3$, где $\vec{\Omega}_3$ – вектор угловой скорости вращения Земли.

Для определения силы упругости троса используется закон Гука. Сила, действующая на точку *k* со стороны точки *k*+1, задается в виде

$$\vec{T}_k = c \, a_k (\gamma_k - 1) \frac{\Delta \vec{L}_k}{\Delta L_k} \,, \tag{5}$$

где $\gamma_k = \frac{\Delta L_k}{\Delta L_{0k}}$, ΔL_{0k} – недеформированная длина элемента, c = EA – коэффициент жесткости троса, a_k – безразмерный коэффициент, равный нулю или единице. Коэффициент $a_k = 0$ для N-ой концевой точки и при выполнении условия: $\Delta L_k < \Delta L_{0k}$, в остальных случаях $a_k = 1$.

Диссипативная сила задается в виде

$$D_k = K_D \frac{d\gamma_k}{dt} = K_D \frac{1}{\Delta L_{0k}} \frac{d(\Delta L_k)}{dt},$$
(6)

где коэффициент $K_D = \frac{c\eta}{\omega_k}$, где η – коэффициент потерь в материале, ω_k - частота колебаний в k -ом элементе.

Моделирование и анализ маятниковых колебаний распределенной ОТС

После окончания управляемого развертывания ОТС с атмосферным зондом трос находится вблизи вертикали и система начинает совершать свободные колебания под действием гравитационных, аэродинамических и упругих сил. Причем, при достаточно большой длине троса, амплитуда этих колебаний со временем не уменьшается и остается приблизительно постоянной. Так, например, если высота начальной круговой орбиты центра масс системы $H = 250 \,\kappa m$, длина троса $L = 28 \kappa m$, коэффициенты сил аэродинамического сопротивления $C_{1,2} = 2,4$, массы КА и зонда $m_1 = 100 \kappa r$ и $m_2 = 20 \kappa r$, и зонда $\sigma_1 = 4,712 \cdot 10^{-3} M^2 / \kappa_2$ баллистические КА коэффициенты И $\sigma_2 = 9,4 \cdot 10^{-2} M^2 / \kappa_2$, линейная плотность троса $0,2\kappa_2 / \kappa_M$, жесткость троса c = 7069H, диаметр троса 0,6 мм, то амплитуда колебаний зонда составляет около 2км, что иллюстрируется на рисунке 2a, где точка (0,0) - центр масс системы, нижняя и верхняя кривые – траектории зонда и КА относительно местной вертикали (y₀ = 0). Для рассматриваемых данных форма троса близка к прямой (рисунок 2б).

На основании проведенного численного моделирования колебаний ОТС с атмосферным зондом можно сделать следующие выводы:

1. Амплитуда маятниковых колебаний слабо зависит от жесткости троса (c) и диссипативных свойств материала троса (коэффициент K_D). При уменьшении жесткости

и увеличении коэффициента диссипации троса на порядок численные результаты слабо изменяются.

2. При уменьшении длины троса амплитуда колебаний зонда относительно вертикали уменьшается. Так, например, при уменьшении в рассматриваемом примере длины троса в 2 раза (14 км) амплитуда колебаний уменьшается в 5 раз (0,4 км).

3. При увеличении высоты орбиты амплитуда маятниковых колебаний троса уменьшается. При увеличении начальной высоты круговой орбиты с 250 км до 300 км амплитуда колебаний уменьшается в 8 раз (0,25 км)

4. При увеличении баллистического коэффициента зонда амплитуда колебаний ОТС увеличивается, причем существует предельное значение баллистического коэффициента, когда система теряет устойчивость и трос деформируется. Для данного примера оно равно приблизительно $\sigma_2 = 0.34 M^2 / \kappa z$.

5. Маятниковые колебания ОТС очень чувствительные к изменению диаметра троса. Так, если увеличить диаметр троса с 0,6 *мм* до 0,7 *мм*, то амплитуда колебаний зонда в рассматриваемом случае увеличиться в 4,25 раза, то есть до 8,5 *км*.

Библиографический список

1. Белецкий В.В., Левин Е.М. Динамика космических тросовых систем. М.: Наука, 1990. 336 с.

2. Zabolotnov Yu. Introduction to Dynamics and Control in Space Tether System. Beijing: Science Press, 2013. 40 pp. (in Chinese)