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GENERATION OF A DATABASE OF AIRFOILS 
WITH BEZIER-PARSEC PARAMETERS 

Bezier-PARSEC parameters are used to describe profile geometry in aerodynam-
ic shape optimization processes due to the reduced number of design variables and their 
ability to simulate airfoils of multiple families. This favorable feature is ideal for stan-
dardizing a set of profiles to be used in deep neural network training. The main chal-
lenge of creating a data set for training a neural network is to obtain a lot of data with 
the same parameters to describe it. This paper offers a proposal to generate a database 
of profiles with Bezier-PARSEC parameters, using the algorithm of Adaptive Differen-
tial Evolution based on the History of Success and methods of population size reduc-
tion. 

Keywords: SHADE algorithm, parameterization Bezier-PARSEC, population 
size reduction methods. 

Introduction. In 2004, Rogalsky in his doctoral thesis proposed the new Bezier-
PARSEC (BP) parameterization method for airfoils [1], [2]. This new method aims to 
accelerate the convergence of evolutionary aerodynamic optimization processes. Ro-
galsky and Derksen proved the abilities to represent differents airfoils with BP parame-
ters (symmetrical and asymmetrical airfoils, high and low lift airfoils, wing airfoils and 
turbomachinery use airfoils). These tests were performed with the differential evolution 
(DE) algorithm, and the objective function was the geometric deviation [3], [4]. The re-
sults were satisfactory, showing that one could have a small number of design variables 



148 

(which implies a smaller number of individuals per generation), which accelerates the 
optimization process without the need to risk the globality of the search for the optimal 
value [1], [2], [3]. This characteristic of BP parameters is what allows to represent air-
foils of different families (NACA, EPPLER, GOE, etc.). Although the DE algorithm 
provides a good speed to find the BP parameters of a profile, in this work a faster op-
tion is provided. 

To acelerate up the optimization process, it is proposed to use an evolutionary al-
gorithm that implements methods of population reduction (PSR): the Success-History 
based Adaptive DE (SHADE) algorithm. Success-History based adaptation is a me-
chanism for parameter adaptation based on a historical memory of successful parameter 
settings that were previously used found during the run [5]. The SHADE algorithm is 
used for the adaptability of incorporating PSR methods [6], [7], [8], [9].  

1. Bezier-parsec parameterization. Rogalsky and Derksen developed two va-
riants of BP parameters based on the degree of the polynomial of the Bezier curves 
used, the parameters BP3333 (with 4 third-degree curves and 12 variables) and the pa-
rameters BP3434 (with 2 third-degree curves and 2 fourth-degree curves and 15 va-
riables) [1], [3]. In this work only the BP3333 variant was evaluated. The airfoils 
created with the BP3333 parameters are represented by four third-degree Bezier curves, 
two to define the thickness curve (leading and trailing curves) and two to define the 
camber curve (leading and trailing curves). In fig. 1 shows the graphical representation 
of each parameter. 

Fig. 1. Parameters BP3333 and Bezier control points,  
a) thickness curve, b) camber curve [3]. 
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2. Evolutionary algorithms. The variant of the DE algorithm used by Rogalsky 
and Derksen is /rand-to-best/1. They considered a value of the crossing scale factor CR 
equal to 1, the crossing operator was omitted. The mutation operator is defined by [2]. 

 

The SHADE algorithm uses an archive set (A) to store the worst vectors of each 
generation. The maximum size of the |A| archive set is defined by the user. When the 
set is saturated, the amount of leftover elements is randomly removed. A allows to give 
diversity of individuals to the following generations of vectors. 

The mutation operator is current-to-pbest/1: 

 

where xpB,g is a randomly chosen vector from the elite group of size N×p (p ∈ [0,1]); 
xr1,g is a chosen vector from the current population Pg; xr2,g is a chosen vector from the 
set P∪A (xpB,g ≠ xi,g ≠ xr1,g ≠ xr2,g). 

The mutation scale factor Fi is randomly chosen from a historical memory with 
elements MF,k (k = 1, . . . , H). The random choice is made by a Cauchy distribution, 
where an element MF,ri from the historical memory is randomly chosen. 

, (1) 
if the value obtained from Fi in (1) is greater than 1, the result is truncated to 1, and if 
the result is less or equal to 0, (1) is reapplied until a valid result is obtained. The values 
of the historical memory are updated in each generation [5].  

After creating a new generation a population reduction method is applied: linear 
reduction (L-PSR) [6] 

 

exponential reduction (E-PSR) [7] 

 

parabolic reduction (P-PSR) [8] 

, 

or nonlinear reduction (NL-PSR) [9]. 
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where Nmin – minimum population, N0 – initial population, NFEmax – maximum number 
of functions evaluated, NFE – the current number of functions evaluated. 

3. Airfoils representation tests 
To test the effectiveness of the SHADE algorithm with the PSR variants, repre-

sentation tests were performed on 34 general aviation airfoils, and the number of target 
functions evaluated to achieve the optimal value established with the algorithm used by 
Rogalsky and Derksen were compared. In all cases, equation 

 

(9) was used as an objective function. The stopping criterion was that the cost limit was 
less than 0,01. The population size of first generation is N0 = 150. The intervals for 
each BP parameter are shown in table 1. The limit on the number of functions evaluated 
for all cases was 20000. For the case of DE algorithm, a mutation scale factor value F = 
0,85 was used [1], [2], [3]. For the use of SHADE algorithm the following input values 
were taken: Nmin = 4, |A| = 1,4, N0 = 10D, H = 6, p = 0,11. 

Table 1. BP3333 parameter ranges for representing general aviation airfoils. 

BP3333 parameter Interval 
rle [-0,05; -0,0005] 
xt [0,25; 0,45] 
yt [0,04; 0,12] 
kt [-0,82; -0,2] 
βte [0,01; 0,4] 
γle [0,005; 0,4] 
xc [0,2; 0,85] 
yc [0,01; 0,07] 
kc [-1,5; -0,05] 
αte [0,01; 0,6] 
dzte [0,0; 0,002] 
zte [0,0; 0,0] 

 
Table 2 shows the average values of NFE to achieve the established convergence. 
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Each case was tested 51 times. The SHADE E-PSR algorithm proved to have the best 
convergence rate, being best in 26 out of 36 cases. Overall, the SHADE E-PSR algo-
rithm required fewer evaluated functions than the original algorithm, achieving a dif-
ference of approximately 1200 evaluated functions. 

Table 2. NFEs required for convergence to airfoils (+ better convergence speed). 

Airfoil DE/rand-to-
best/1 

SHADE L-
PSR 

SHADE E-
PSR 

SHADE P-
PSR 

SHADE NL-
PSR 

CLARK-Y 7801 6848 6602 8799 5705+ 

CLARK-YH-11 3358 2700 2409+ 3392 3175 

CLARK-YH-20 4009 2569 2441+ 3306 2840 

EPPLER 231 4360 3965 3474+ 4406 4052 

EPPLER 334 7058 5133 4542+ 5542 5092 

EPPLER 558 5200 4180 3606+ 4179 3935 

EPPLER 562 3460 3427 2950+ 3246 3298 

FX 61-163 6110 5155 4111+ 5517 4703 

FX 61-184 12960 6638 5560+ 7441 5777 

FX 66-S-171 12459 6325 5184+ 7019 5500 

FX 66-S-196 6860 4549 3847+ 5292 4515 

GOE 398 3658 4088 2946+ 4434 3581 

GOE 446 4760 4296 3502+ 4916 4453 

GOE 477 2705 2357+ 2513 2509 2566 

GOE 526 3263 2624 2413+ 2773 2419 

GOE 593 3563 2460 2042+ 2599 2596 

GOE 611 2753 3243 2361+ 2923 2915 

GOE 796 2959 1732+ 2397 2331 2195 

LOCKHEED C-
5A

3460 3037 2840+ 3597 3917 

ME-163 1400+ 1785 1522 1558 1790 
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Table 2 (cont.) 

Airfoil DE/rand-to-
best/1 

SHADE 
 L-PSR 

SHADE  
E-PSR 

SHADE  
P-PSR 

SHADE  
NL-PSR 

NACA 2412 1660 1842 1571 1469+ 1881 

NACA 4412 2406 1951 1572+ 1946 1786 

NACA 4418 2659 1949 1837+ 2035 1998 

NACA 6412 4604 3725 3474+ 4093 4008 

NACA 63-212 2054 2573 2019+ 2273 2765 

NACA 63-412 3154 3119 2746+ 2833 2811 

NACA 64A410 3253 2962 2683+ 3071 2939 

NACA 24112 6505 4939 5154 5554 4825+ 

TSAGI 718 2907 2620 2374+ 2717 2698 

TSAGI 84614 2151 2138 1689 2006 1646+ 

TSAGI A-9 1503+ 1536 1692 2095 2314 

TSAGI A-18 2262 2034 2021 1976+ 2314 

TSAGI B-12 2707 2410+ 2572 2834 2697 

TSAGI B-16 5050 4263 3541+ 4178 3822 

TSAGI D-2-14 4150 4283 3916+ 4323 4345 

TSAGI P-II-18 2950 2467 2023+ 2688 2368 

Avg. NFEs 4226 3386 3004 3663 3340 
 
Conclusion. The proposal to use the SHADE algorithm with the four variants of 

PSR obtained a better convergence speed compared to the algorithm proposed by Ro-
galsky and Derksen, the SHADE E-PSR variant being the best results obtained, in 72% 
of cases obtained the fastest convergence, giving a saving of 1200 functions approx-
imately. This amount of saved functions is considerable when performing reverse aero-
dynamic design processes, such as obtaining BP parameters from 800 airfoils to create 
a database for training a neural network. 
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