решения для построения матрицы жесткости цилиндрической оболочки.-В сб.: Вопросы прикладной механики в авиационной технике. Куйбышев: Куйбышевский авиационный институт, 1975, вып. 77.

4. Биргер И.А. и др. Расчет на прочность деталей машин. : Справочник. - М.: Машиностроение, 1979.

VIK 539.3:624.074

И.С. Ахмедьянов, В.Е. Кремс

РАСЧЕТ СФЕРИЧЕСКОЙ ОБОЛОЧКИ С ДВУМЯ ПРОИЗВОЛЬНО РАСПОЛОЖЕННЫМИ ЖЕСТКИМИ КРУГЛЫМИ ШАЙБАМИ

В /I/ изложено общее решение задачи о расчете сферической оболочки с несколькими произвольно расположенными жесткими круг-лыми шайбами. В предлагаемой статье приводятся дополнительные соотношения применительно к этой задаче. Кроме того, представлены некоторые результаты числового расчета сферической оболочки с двумя шайбами, воспринимающими касательные силы.

І. Для составления граничных условий по контурам шайо и по опорной параллели, а также для расчета внутренних усилий, моментов и перемещений в сферической оболочке необходимо располагать координатами одной и той же точки ее срединной поверхности в различных системах координат.

Пусть ψ_i , ψ_i — координаты некоторой точки c срединной повержности сферической оболочки в i —ой местной системе координат, связанной c i —ой шайбой (рис. I) /I/. Тогда для координат c, c этой точки в общей системе координат будем иметь /2/:

$$\cos \alpha = \cos A_i \cos \varphi_i - \sin A_i \sin \varphi_i \cos \varphi_i$$
, (1)

$$\cos (\beta - B_i) = \frac{\cos \psi_i - \cos A_i \cos \alpha}{\sin A_i \sin \alpha}.$$
 (2)

Tak kak $0 \le \alpha \le \mathcal{I}$, to

$$\sin \alpha = + \sqrt{1 - \cos^2 \alpha}. \tag{3}$$

Согласно теореме синусов /2/:

$$\sin(\beta - B_i) = \sin \varphi_i \frac{\sin \varphi_i}{\sin \alpha}$$
 (4)

Тогда в соответствии с (2) будет:

$$\beta = B_i + \arccos\left(\frac{\cos \psi_i - \cos A_i \cos \alpha}{\sin A_i \sin \alpha}\right)$$
 (5)

при $0 \le \varphi_i \le \mathcal{F}$ и

$$\beta = B_i + 2\pi - \arccos\left(\frac{\cos \psi_i - \cos A_i \cos d}{\sin A_i \sin d}\right) \tag{6}$$

HPM $\mathcal{F}_i < \varphi_i < 2\mathcal{F}_i$.

Для угла Θ_i , под которым пересекаются меридианы $\psi_i = const$ и $\beta = const$, можно получить следующие соотношения /2/:

$$\cos \theta_i = \frac{\cos A_i - \cos \alpha \cos \psi_i}{\sin \alpha \sin \psi_i}, \qquad (7)$$

$$\sin \theta_i = \sin A_i \frac{\sin \varphi_i}{\sin \alpha}$$
 (8)

Если известни координати \prec , β точки c в общей системе координат, то ее координати ψ_i , ψ_i в i -ой местной системе координат можно определить из зависимостей:

$$\cos \psi_i = \cos A_i \cos \alpha + \sin A_i \sin \alpha \cos (\beta - B_i),$$
 (9)

$$\sin \psi_i = + \sqrt{1 - \cos^2 \psi_i} , \qquad (10)$$

$$\cos \varphi_i = \frac{\cos A_i \cos \varphi_i - \cos \omega}{\sin A_i \sin \varphi_i}, \quad (II)$$

$$\sin \varphi_i = \sin \alpha \frac{\sin (\beta - B_i)}{\sin \varphi_i}$$
 (I2)

Отсюда

$$\varphi_i = \arccos\left(\frac{\cos A_i \cos \varphi_i - \cos \omega}{\sin A_i \sin \varphi_i}\right)$$
(13)

при
$$0 \le \beta - B_i \le \pi$$
 и
$$\varphi_i = 2\pi - \arccos\left(\frac{\cos A_i \cos \varphi_i - \cos \alpha}{\sin A_i \sin \varphi_i}\right)$$
 (14)

при
$$\pi < (\beta - B_L) < 2\pi$$
.

Для угла θ ; будут справедливы формулы (7) и (8).

2. Совокупность граничных условий (18) /I/ по контурам шайб и условий закрепления оболочки по нижней опорной параллели будет в себе содержать бесконечные тригонометрические ряды. Если в этих радах ограничиться соответственно ($K^{\circ}+1$) и ($n_1^{\circ}+1$), ($n_2^{\circ}+1$), ..., ($n_3^{\circ}+1$) членами (3 — число шайб), то в упомянутых условиях число всех неизвестных произвольных постоянных будет равно

$$N = 8(n_1 + n_2 + ... + n_3 + K^\circ) + 4(s+1).$$

Для их определения необходимо составить N уравнений. Из них первые 8 ($n_1+n_2+...+n_3+\frac{1}{2}$ з) уравнений можно получить удовлетворяя условиям (18) /I/ в отдельных точках контуров шайб. С этой целью разбиваем контур $\psi_i=\psi_i=const$ i -ой шайбы на $(2n_i+1)$ частей точками $\psi_{i,o}$, $\psi_{i,1},...,\psi_{i,2n_i}$, принимая

 $\varphi_{i,j} = j \Delta \psi_i, \quad \Delta \psi_i = \frac{2\pi}{2n_{i+1}}, \quad j = 0,1,2,...,2n_i^*.$ Для каждой из этих точек разбиения записываем условия (18)
/I/, полагая в них последовательно $\psi_i = \psi_i, \quad \psi_i = \psi_{i,1}, \dots, \psi_i = \psi_{i,2n_i^*}.$ В результате получатся ($8n_i^* + 4$) уравнения.

Удовлетворив подобным образом граничным условиям по контурам всех 3 шайб, мы будем располагать $8(n_1^2+n_2^2+...+n_3^2+\frac{1}{2}$ 3) уравнениями.

Недостающие (8 к° + 4) уравнения составим, записав условия закрепления всей оболочки в отдельных точках β ; контура $\alpha = \alpha$:

$$\beta_{j} = j \Delta \beta$$
, $\Delta \beta = \frac{2\pi}{2\kappa^{\circ} + 1}$, $j = 0, 1, 2, ..., 2\kappa^{\circ}$.

3. Приведем результаты расчета оболочки в виде полусферы с двумя жесткими круглыми шайбами, центры которых располагаются в плоскости меридиана β = 0.

Исходные данные: R = 900 мм, h = 3 мм,

$$B_1 = 0$$
, $A_1 = 20^{\circ}$, $\psi_1^{\circ} = 6^{\circ}$, $B_2 = 0$, $A_2 = 44^{\circ}$, $\psi_2^{\circ} = 6^{\circ}$, $\mu = 0.3$, $E = 7 \cdot 10^4$ MTa.

Обе шайбы нагружены одинаковыми касательными силами:

$$P_{\xi 1} = P_{\xi 2} = 10000 \text{ H}.$$

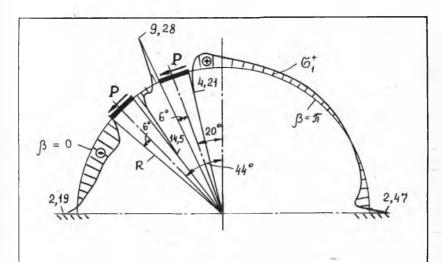


Рис. І

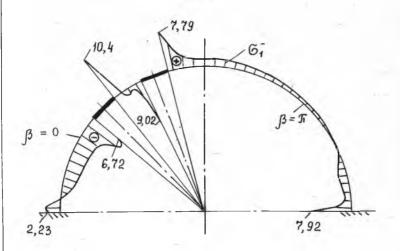


Рис. 2

Расчеты проводились для случая жесткого защемления опорной параллели $\ll = \ll^\circ = 90^\circ$. Граничные условия по контурам шайо и по контуру $\ll = \ll^\circ$ удовлетворялись в отдельных точках ($n_4^\circ = 10$, $n_2^\circ = 10$, $N_3^\circ = 10$).

Результаты вычислений представлены на рис. І и 2 (в МПа). Здесь через \mathfrak{S}_1^+ и \mathfrak{S}_2^- обозначены напряжения в точках наружной в внутренней поверхностей оболочки в общей системе координат \mathfrak{A}_1 , \mathfrak{S}_2^+

$$\tilde{G}_{1}^{+} = \frac{N_{1}}{h} + \frac{6M_{1}}{h^{2}}, \qquad \tilde{G}_{1}^{-} = \frac{N_{1}}{h} - \frac{6M_{1}}{h^{2}}.$$

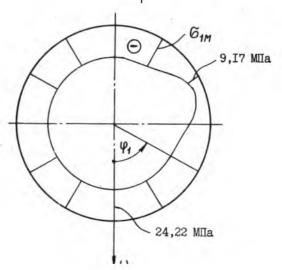
Перемещения шайб получились равными:

$$\Delta_{+4}$$
= 0,II5 mm, Δ_{+2} = 0,I00 mm.

4. В качестве второго примера была рассмотрена сферическая оболочка, имеющая две шайбы с координатами центров

$$A_1 = 20^{\circ},$$
 $B_1 = 0,$ $A_2 = 20^{\circ},$ $B_2 = 45^{\circ}$

и нагруженная внутренним давлением р = 0,1 МПа.



Угловые размеры шайб:

$$2\psi_{1}^{\circ} = 2\psi_{2}^{\circ} = 12^{\circ}$$
.

Остальные параметры оболочки те же, что и у рассмотренной ринее.

Расчеты были выполнены при $n_1^{\circ} = n_2^{\circ} = K_{\circ} = 7$. Общее число ноизвестных произвольных постоянных N = 180.

На рис. 3 представлено распределение напряжений

$$\mathfrak{S}_{1M} = \frac{6M_1}{h^2}$$

в точках контура первой шайбы (в местной системе координат). Перемещения шайб:

$$\Delta_{\xi_4} = \Delta_{\xi_2} = 0,139 \text{ mm}.$$

Литература

- І. Ахмедьянов И.С. О расчете сферической оболочки с несколькими произвольно расположенными жесткими круглыми шайбами. — В кн.: Вопросы прочности и долговечности элементов авиационных конструкций. Межвузовский сб. — Куйбышев: КуАИ, 1983, с.29-37.
- 2. Степанов Н.Н. Сферическая тригонометрия. М.-Л.: Гостех-издат, 1948. 155 с.

УДК 629.7.015.4:539.3

В.М.Балык, В.С.Литвинов, Б.И.Сахаров

ФОРМАЛИЗАЦИЯ УСЛОВИЙ СОВМЕСТНОСТИ ПРИ РАСЧЕТЕ НАПРЯЖЕННО-ДЕФОРМИРОВАННОГО СОСТОЯНИЯ МНОГОЗАМКНУТЫХ КОНСТРУКЦИЙ

Особенность моделирования работи многозамкнутых конструкций заключается в необходимости учета совместности работи отдельных элементов конструкции. Определение напряженно-деформированного остояния таких конструкций, как правило, проводится на основе обобщенного метода перемещений Образцова И.Ф. /I,2/, в котором пространственные функции депланации взаимоувязываются с условиями ювместности.

Продольное u(z,s) и поперечное v(z,s) перемещения в констукции представляются в виде следующего конечного ряда: