УДК 539.3:629.7.015.4

В.Н.Паймушин, А.Ю.Одиноков

К РАСЧЕТУ ДВУХСЛОЙНЫХ ОБОЛОЧЕК ВРАЩЕНИЯ СО СЛОЯМИ ПЕРЕМЕННОЙ ТОЛЩИНЫ ПРИ НЕСИММЕТРИЧНОМ НАГРУЖЕНИИ

Для расчета двухслойных оболочек со слоями переменной толщины в работе /I/ предложен вариант теории, в котором учтены поперечные сдвиги в каждом из слоев по-гипотезам прямой линии С.П.Тимошенко, а также приняты во внимание различия в базисных векторах на срединных поверхностях слоев. При этом толщины слоев оболочки предполагались средними, а их изменение достаточно плавным, удовлетворяющим условиям работы /2/.

В дальнейшем в работах /3,4/ на основе соотношений /I/ был разработан численный метод решения задач статики и термоупругости оболочек вращения при осесимметричных деформациях. Данная статья посвящена применению указанных соотношений к расчету двухслойных оболочек вращения при произвольном несимметричном нагружении (рис.I). Так же, как и в /3,4/, рассматриваются оболочки, у которых толщина измеряется лишь в меридиональном

Puc. I

Направлении. При этом имеют место соотношения дифференциальной геометрии работы /3/.

Зависимости между компонентами векторов перемещений \mathcal{U}_{i}^{κ} . \mathcal{W}^{κ} ($\dot{\iota}, \kappa = I, 2$) срединных поверхностей слоев оболочки и углами поворота нормалей к этим поверхностям \mathcal{U}_{i}^{κ} запишутся:

$$u_{1}^{z} = u_{1}^{y} + \sum_{\kappa \neq j}^{z} h^{\kappa} \psi_{1}^{\kappa} + y_{1} w^{j}, \qquad u_{2}^{z} = u_{2}^{y} + \sum_{\kappa \neq j}^{z} h^{\kappa} \psi_{2}^{\kappa}, \qquad (1)$$
$$w^{2} = w^{1} - y_{1} (u_{1}^{y} + h^{y} \psi_{1}^{y}).$$

Здесь и далее приняты основные обозначения работы /I/:2h^{*}толцины слоев, 4 – козффициент, учитывающий взаимный наклон слоев, верхний индекс - номер

Соотношения теории деформации слоев примут вид

$$A_{i}^{\kappa} e_{ij}^{\kappa} = u_{ij}^{\kappa} + A_{i}^{\kappa} \kappa_{N}^{\kappa} w^{\kappa}; \quad A_{i}^{\kappa} e_{i2}^{\kappa} = u_{2,i}^{\kappa}; \quad A_{i}^{\kappa} e_{i3}^{\kappa} = w_{i1}^{\kappa} - A_{i}^{\kappa} \kappa_{i1}^{\kappa} w_{i1}^{\kappa}; \\ A_{i}^{\kappa} E_{i2}^{\kappa} = \psi_{i1}^{\kappa}; \quad A_{i}^{\kappa} E_{i2}^{\kappa} = \psi_{2,i}^{\kappa};$$
(2)

$$A_{1}^{\kappa}A_{2}^{\kappa}e_{22}^{\kappa} = A_{1}^{\kappa}u_{2,2}^{\kappa} + A_{2,1}^{\kappa}u_{1}^{\kappa} + A_{2}^{\kappa}K_{22}^{\kappa}w_{1}^{\kappa}; \quad A_{1}^{\kappa}A_{2}^{\kappa}e_{24}^{\kappa} = \\ = A_{1}^{\kappa}u_{12}^{\kappa} - A_{24}^{\kappa}u_{2}^{\kappa}; \quad A_{2}^{\kappa}e_{23}^{\kappa} = w_{12}^{\kappa} - A_{2}^{\kappa}K_{42}^{\kappa}u_{2}^{\kappa}; \quad (3)$$

$$A_{1}^{\kappa}A_{2}^{\mu}E_{22}^{\kappa} = A_{1}^{\kappa}\psi_{2,2}^{\kappa} + A_{2,1}^{\kappa}\psi_{1}^{\kappa}; \quad A_{1}^{\kappa}A_{2}^{\kappa}E_{21}^{\kappa} = A_{1}^{\kappa}\psi_{1,2}^{\kappa} - A_{2,1}^{\kappa}\psi_{2}^{\kappa}; \\ E_{ij}^{\kappa^{\Xi}} = \frac{e_{i,1}^{\kappa} + \Xi^{\kappa}E_{ij}^{\kappa}}{f^{*}\kappa_{i1}^{\kappa}Z^{\kappa}}; \quad y_{i3}^{\kappa^{\Xi}} = \frac{e_{i3}^{\kappa} + \psi_{i}^{\kappa}}{1+\kappa_{i1}^{\kappa}Z^{\kappa}}; \quad y_{i2}^{\kappa^{\Xi}} = \mathcal{E}_{i2}^{\kappa^{\Xi}} + \mathcal{E}_{i2}^{\kappa^{\Xi}}; \quad (4)$$

$$\begin{split} & \int_{H}^{h} \text{IIOTOHHWE YCURLIF I MOMENTE OIDERLEASUTCS ЗЕВИСИМОСТЯМИ} \\ & \int_{H}^{h} = \int_{K}^{h} \mathcal{G}_{H}^{h} \left(1 + K_{22}^{k} \mathbb{Z}^{k}\right) d\mathbb{Z}^{k}; \dots; \qquad M_{12}^{k} = \int_{h}^{h} \mathcal{G}_{12}^{k} \left(1 + K_{22}^{k} \mathbb{Z}^{k}\right) \mathbb{Z}^{k} d\mathbb{Z}^{k}; \\ & M_{H} = M_{H}^{1} + \theta_{2} h^{1} \left(T_{H}^{2} - y_{1} T_{15}^{3}\right); \qquad N_{H} = T_{H}^{1} + \theta_{2} \left(T_{H}^{2} - y_{1} T_{12}^{2}\right); \\ & M_{12} = M_{12}^{1} + \theta_{2} h^{1} \left(T_{12}^{2} - y_{2} T_{23}^{2}\right); \qquad N_{12} = T_{12}^{1} + \theta_{2} \left(T_{12}^{2} - y_{2} T_{23}^{2}\right); \\ & H_{H} = \theta_{2} \left(M_{H}^{2} + h^{2} T_{H}^{2}\right); \qquad N_{13} = T_{13}^{1} + \theta_{2} \left(T_{13}^{2} + y_{1} T_{H}^{2}\right); \\ & H_{12} = \theta_{2} \left(M_{12}^{2} + h^{2} T_{12}^{2}\right), \end{split}$$
(5)

где для нижнего индекса следует выполнить еще замену (I = 2), после чего положить $y_z = 0$, θ_i – коэффициенты, учитывающие различие в метриках срединных поверхностей слоев /I/.

Равенства для внешних погонных усилий и моментов, приложенных к граничным срезам, не будут отличаться от (5) - (6) ничем, кроме знака ~, которым помечаем нагрузочные члены. Для прочих нагрузочных членов справедливы соотношения работы /I/, где следует положить $V_2 = 0$.

Систему уравнений равновесия /1/ запишем в следующей форме:

$$(A'_2 N_1)_{,1} + \mathcal{A}_i + \tilde{q}_i = 0, \quad (i = \overline{1,7}), \quad (7)$$

где обозначено

$$\{N_{i}\} = \{N_{i1}, N_{i2}, N_{i3}, M_{i4}, M_{i2}, H_{i1}, H_{i2}\},$$
(8)

$$\begin{split} l_{1} &= g_{1}^{1} + g_{1}^{2} - y_{1} g_{3}^{2} + y_{4,4} A_{2}^{2} T_{23}^{2}; \quad \lambda_{2} = g_{2}^{1} + g_{2}^{1}; \\ l_{3} &= g_{3}^{1} + g_{3}^{2} + y_{1} g_{1}^{2} - y_{4,4} A_{2}^{2} T_{41}^{2}; \quad \lambda_{4}^{1} = g_{4}^{1} + h^{1}(g_{1}^{2} - g_{4}^{1}) + A_{2}^{2} T_{12}^{2}; \quad \lambda_{6}^{1} = g_{4}^{2} + h^{2}(g_{1}^{2} - g_{3}^{1}) + A_{2}^{2} T_{12}^{2}; \quad \lambda_{6}^{1} = g_{4}^{2} + h^{2} g_{1}^{2} - h_{14}^{2} A_{2}^{2} T_{41}^{2}; \quad \lambda_{5}^{2} = g_{5}^{1} + h^{1}(g_{1}^{2} - g_{3}^{1}) + A_{2}^{2} T_{12}^{2}; \quad \lambda_{6}^{2} = g_{4}^{2} + h^{2} g_{1}^{2} - h_{14}^{2} A_{2}^{2} T_{41}^{2}; \quad \lambda_{7}^{2} = g_{5}^{2} + h^{2} g_{2}^{2} - h_{14}^{2} A_{2}^{2} T_{12}^{2}. \\ & \Lambda_{7}^{2} = g_{5}^{2} + h^{2} g_{2}^{2} - h_{14}^{2} A_{2}^{2} T_{12}^{2}. \\ & \Lambda_{7}^{2} = g_{5}^{2} + h^{2} g_{2}^{2} - h_{14}^{2} A_{2}^{2} T_{12}^{2}. \\ & \Lambda_{7}^{2} = g_{5}^{2} + h^{2} g_{2}^{2} - h_{14}^{2} A_{2}^{2} T_{12}^{2}. \\ & \Lambda_{7}^{2} = g_{5}^{2} + h^{2} g_{2}^{2} - h_{14}^{2} A_{2}^{2} T_{12}^{2}. \\ & \Lambda_{7}^{2} = g_{5}^{2} + h^{2} g_{2}^{2} - h_{14}^{2} A_{2}^{2} T_{12}^{2}. \\ & \Lambda_{7}^{2} = g_{5}^{2} + h^{2} g_{2}^{2} - h_{14}^{2} A_{2}^{2} T_{12}^{2}. \\ & \Lambda_{7}^{2} = g_{5}^{2} + h^{2} g_{2}^{2} - h_{14}^{2} A_{2}^{2} T_{12}^{2}. \\ & \Lambda_{7}^{2} = A_{1}^{2} T_{21,2}^{2} - A_{2,1}^{2} T_{22}^{2} + A_{14}^{2} A_{2}^{2} K_{14}^{2} T_{13}^{2}; \\ & g_{3}^{2} = A_{1}^{2} T_{23,2}^{2} - A_{1}^{2} A_{2}^{2} (K_{14}^{2} T_{14}^{2} + K_{22}^{2} T_{23}^{2};); \\ & g_{3}^{2} = A_{1}^{2} T_{23,2}^{2} - A_{1}^{2} A_{2}^{2} (K_{14}^{2} T_{14}^{2} + K_{22}^{2} T_{22}^{2}); \\ & g_{4}^{2} = A_{1}^{4} M_{21,2}^{2} - A_{2,1}^{2} M_{22}^{2} - A_{1}^{2} A_{2}^{2} T_{13}^{2}; \\ & g_{4}^{2} = A_{1}^{4} M_{22,2}^{2} + A_{2,1}^{2} M_{22}^{2} - A_{1}^{2} A_{2}^{2} T_{13}^{2}; \\ & g_{4}^{2} = A_{1}^{4} M_{22,2}^{2} + A_{2,1}^{2} M_{22}^{2} - A_{1}^{2} A_{2}^{2} T_{13}^{2}; \\ & g_{4}^{2} = A_{1}^{4} M_{22,2}^{2} + A_{2,1}^{2} M_{22}^{2} - A_{1}^{2} A_{2}^{2} T_{13}^{2}; \\ & g_{4}^{2} = A_{1}^{4} M_{22,2}^{2} + A_{2}^{2} M_{24}^{2} - A_{1}^{2} A_{2}^{2} T_{13}^{2} . \\ &$$

Система (7), как и в общем случае /I/, записывается в частных производных и имеет I4 порядок, однако входящие в уравнения величины определяются несколько более простыми зависимостями.

Введя в рассмотрение соотношения закона Гука для ортотропного материала с учетом теплового воздействия, замкнем систему соотношений задачи. Считаем плоскости упругой симметрии перпенликулярными соответствующим координатным линиям, а физикомеханические характеристики материалов неизменными в окружном направлении.

Для решения задачи воспользуемся широко известным приемом разделения переменных с помощью разложения функций в тритонометрические ряды по окружной координате. Поскольку ограничения, связанные с требованием неизменяемости коэффициентов дифференциальных уравнений в окружном направлении, нами выполнены, представим функции внешней нагрузки, температурного поля, граничных условий и факторов напряженно-деформированного состояния (НДС) оболочки в виде разложений в тригонометрическия ряды по окружной координате $\varphi = \varphi_2$. Например:

$$\begin{split} u_{1}^{\kappa} &= \sum_{\alpha=0}^{\infty} \left(u_{1\alpha}^{\kappa} \cos \alpha \varphi + \widetilde{u}_{1\alpha}^{\kappa} \sin \alpha \varphi \right), \\ u_{2}^{\kappa} &= \sum_{\alpha=0}^{\infty} \left(\widetilde{u}_{2\alpha}^{\kappa} \cos \alpha \varphi + u_{2\alpha}^{\kappa} \sin \alpha \varphi \right), \end{split} \tag{II}$$

 $\widetilde{N}_{H} = \sum_{n=0}^{\infty} \left(\widetilde{N}_{Hae} \cos a \epsilon \varphi + \widetilde{N}_{Hae} \sin a \epsilon \varphi \right),$

где arphi – угол поворота меридиональной плоскости около оси симметрии.

Подставив разложения вида (II) в соотношения задачи (I) -(2) и (4)- (9), соберем члены с одинаковым порядковым номером 22, отдельно с чертой и без черты. Для амплитудных величин каждой гармоники придем к соотношениям, ничем не отличающимся от (I) - (2) и (4) - (9), кроме индекса 22, который будем в дальнейшем опускать. В соотношениях же (3) и (IO) производные в окружном направлении заменяются производениями следующего вида:

$$T_{2i,2}^{\kappa} - a_{i} \mathscr{Z} T_{2i}^{\kappa}; \quad T_{23,2}^{\kappa} - -a_{i} \mathscr{Z} T_{2i}^{\kappa}; \quad M_{2i,2}^{\kappa} - a_{i} \mathscr{Z} M_{2i}^{\kappa};$$

$$\tilde{u}_{i,2}^{\kappa} - a_{i} \mathscr{Z} u_{i}^{\kappa}; \quad w_{,2}^{\kappa} - a_{i} \mathscr{Z} w^{\kappa}; \quad \psi_{i,2}^{\kappa} - a_{i} \mathscr{Z} \psi_{i}^{\kappa}$$

$$(12)$$

$$(12)$$

$$(12)$$

Причем величины без черты имеют коэффициенты: $a_i = -I$, $a_2 = I$; с чертой: $a_i = I$, $a_2 = -I$. В остальном соотношения (3) и (IO) также не меняются при их использовании для амплитудных величин.

Введя обозначения

$$v_{i} = U_{i}^{1}; \quad v_{3} = w^{1}; \quad v_{i+3} = \psi_{i}^{1}; \quad v_{i+5} = \psi_{i}^{2}; \quad (i = 1, 2), \quad (13)$$

запишем граничные условия в форме, предложенной в /5/:

$$(1-S_{iH})(v_{iH}-\widetilde{v}_{iH})+S_{iH}(N_{iH}-\widetilde{N}_{iH})=0,$$

$$(i-\mathcal{S}_{i\kappa})(v_{i\kappa}-\tilde{v}_{i\kappa})+\mathcal{S}_{i\kappa}(N_{i\kappa}-\tilde{N}_{i\kappa})=0 \quad (i=\overline{1,7}), \quad (14)$$

где индексом H помечены значения функций на краю оболочки, который соответствует началу интервала изменения α'_{i} , индексом K – значения на другом краю оболочки (рис. I); целочисленные коэффициенты δ_i в формулах (I4) принимают два значения: О – если на краю задано значение величины \tilde{V}_i , и I – если на краю задано значение погонного усилия или момента \tilde{N}_i .

Вводя в соотношения закона Гука формулы (4), выполним интегрирование по толщине в соответствии с (5). Подставляя зависимости (2) и (3) в полученные выражения, придем к соотношениям упругости, которые залишем для амплитудных величин в матричной форме, используя равенства (I) и замены (I2):

$$\{T_{i}^{\kappa}\} = [\hat{T}_{ij}^{\kappa}] \times \{x_{j}\} + \{\tilde{T}_{ti}^{\kappa}\}, \quad (i = \overline{1, 10}; \ j = \overline{1, 14}), \quad (15)$$

где

$$\{x_{i}\} = \{v_{i,1}; v_{1}; v_{2,i}; v_{2}; \dots; v_{n,i}; v_{n}\},$$
(16)

$$\left\{T_{i}^{\kappa}\right\} = \left\{T_{H}^{\kappa}; T_{I2}^{\kappa}; T_{I3}^{\kappa}; M_{H}^{\kappa}; M_{I2}^{\kappa}; T_{22}^{\kappa}; T_{24}^{\kappa}; T_{23}^{\kappa}, M_{22}^{\kappa}; M_{24}^{\kappa}\right\}, \tag{I7}$$

в коэффициенты прямоугольной матрицы [\hat{T}_{ij}^{κ}] определяются путем несложных, но довольно громоздких преобразований, описанных выше.

Подставив соотношения (I5) в равенстве (6), (9) и (I0) и учтя обозначения (8) и замены (I2), перепишем (6), (9) и (I0) в форме, аналогичной (I5):

$$\{g_{e}^{\kappa}\} = [\hat{g}_{ij}^{\kappa}] \times \{x_{j}\} + \{\hat{g}_{te}\}$$

$$\{N_{i}\} = [\hat{N}_{ij}] \times \{x_{j}\} + \{\hat{N}_{ti}\}$$

$$\{\lambda_{i}\} = [\hat{\lambda}_{ij}] \times \{x_{j}\} + \{\hat{\lambda}_{ti}\}$$

$$j = \overline{1, 14}$$

$$(18)$$

Здесь для коэффициентов, помеченных знаком Λ , по-прежнему справедливы зависимости вида (6), (9), (10), но со знаком Λ над соответствужщими величинами.

Для решения полученной одномерной краевой задачи воспользуемся устойчивым численным методом конечных сумм в варианте интегрирующих матриц М.Б.Вахитова /6, 7/.

С помощью интегральных операторов \mathcal{J}_1 и \mathcal{J}_2 /6, 7/ выразим функции \mathcal{V}_i через их производные и значения на границе

$$v_i = \mathcal{J}_{i} v_{i,i} + v_{i,i} \tag{19}$$

и преобразуем уравнения равновесия к интегральной форме

$$A'_{2}N_{i} - \mathcal{I}_{2}(\lambda_{i} + \tilde{q}_{i}) - A'_{2\kappa}N_{i\kappa} = 0.$$
⁽²⁰⁾

Далее, пользуясь (I9), исключим функции \mathcal{V}_i , а также их значения \mathcal{V}_{ik} из соотношений (I4),(I6), (I5) и (I8). Затем

подставим (18) в уравнения равновесия (20) и граничные условия (14). Присоединив граничные условия к системе уравнений равновесия и перейдя к дискретному аналогу интегральных операторов и других величин задачи, придем к одному разрешающему матричному уравнению

$$[A] \times \{ \mathcal{Y} \} = \{ B \}$$
(21)

относительно вектора неизвестных

 $\{ \psi \} = \{ \psi_{1,1} ; \psi_{2,1} ; \dots ; \psi_{7,1} ; \\ \psi_{1\mu} ; \psi_{2\mu} ; \dots ; \psi_{7\mu} ; N_{1k} ; N_{2\mu} ; \dots ; N_{7k} \} .$ (22)

Решая систему линейных алгебраических уравнений (22) порядка 7 х N + I4, находим функции $v_{i,1}$ в N выбранных расчетных точках и константы интегрирования. $v_{i,1}$. Затем с помощью формул (I9) определяем и сами функции v_i , а по ним и все прочие амплитудные величины в расчетных сечениях по меридиану. Суммируя решения для отдельных гармоник, получаем решение двумерной краевой задачи.

Изложенный метод расчета был реализован практически без дополнительных упрощающих допущений в виде вычислительного комплекса с пакетом программ на языке ФОРТРАН ОС ЕС ЭВМ. Он является весьма универсальным и применялся для решения широкого класса задач статики и термоупругости двухслойных и однослойных оболочек вращения.

С целью иллюстрации сходимости решения и достоверности полу чаемых результатов в таблице І приведены результаты расчета

эллипсоидальной оболочки (рис.2), подверженной действию нормальной поверхностной нагрузки q = q, $\cos 2 \varphi$. Представлено также сравнение с данными расчета, имеющимися в книге /8/, в которой для решения одномерной задачи использовался метод дискретной ортогонализации.

Puc. 2

Расчеты производились при следующих исходных данных: a = 6 м, b = 10 м, h = 0.2 м, $\Xi_{H} = -9 \text{ м}$, $E_{1} = 0.72 \cdot 10^{5} \text{ МПа}$, $E_{2} = 2E_{1}$, $y_{1} = 0.075$, $G_{12} = 0.3E_{1}$, $q_{2} = 0.2 \text{ МПа}$. Испольповалась сетка расчетных сечений с неравномерным шагом, изменявшимся в точке $\Xi = -7.2$. Число сечений принималось равным 2I = 12 + 9 и 40 = 23 + 17. Как видно из теблицы, решение рассматриваомой задачи сходится уже при 21 расчетном сечении и не меняется при удвоении их числа. Небольшее отличие от решения /8/ объясняотся, по-видимому, различием гипотез, положенных в основу расчетимх соотношений.

Таблица І

	Z/Z.H		0	0,2	0,4	0,6	0,8	I,0
2 = 1	MW AR	Pem.[8]	0	I,060	I,629	1,977	2,170	2,233
		N = 2I	0	I,060	I,630	I,978	2,171	2,233
		N = 40	0	I,059	I,629	I,977	2,170	2,233
	NH MIG	Pem.[8]	I4,77	I6,53	17,13	17,44	17,62	17,68
		N = 2I	I4,74	I6,56	17,15	17,45	17,63	I7,69
		N = 40	I4,74	16,56	17,14	I7,45	17,63	I7,69
	M22-10-2 MIIa	Pem.[8]	-I2,35	-2,202	-0,4554	0,1443	0,3762	0,4402
		N = 2I	-11,80	-2,222	-0,4624	0,1433	0,3753	0,439I
		N = 40	-II,80	-2,220	-0,4529	0,1433	0,3756	0,4394
$\mathcal{R} = 4$	m mm	Pem.[8]	0	0,8856	I,508	2,I49	2,508	2,631
		N = 2I	0	0,9028	I,62I	2,188	2,552	2,677
		N = 40	0	0,9027	I,62I	2,187	2,552	2,667
	NH MIA	Pem.[8]	6,490	I,365	17,74	20,28	21,74	22,20
		N = 2I	6,669	I3,93	18,06	20,63	22,IO	22,58
		N = 40	6,670	13,93	18,05	20,63	22,10	22,58
	МПа	Pem.[8]	-0,II20	0,7114	0,8942	0,9950	I,05I	I,069
		N = 2I	-0,1067	0,7105	0,8975	I,00I	I,058	I,076
	Maz	N = 40	-0,1067	0,7I04	0,8974	I,00I	I,058	I,076.

3-7248

Были произведены также исследования деформированного состояи облегченного оптического зеркала астростанции (рис. З. ымеры даны в миллиметрах), нагруженного силами собственного ica P , действующими под различными углами β к оси симмети. Облегчение зеркала достигнуто за счет сетки правильных юквозных шестигранных отверстий, образующих сотовую конструкно. Перфорированная часть зеркала рассматривалась как оболочеч-И слой с приведенными упругими характеристиками. которые пределялись по формулам работы /9/. Материал зеркала - бериллий, • характеристики: Е = 0,294·10⁶ MIa; V = 0,039; удельный $H = 0, 182 \text{ H/m}^3$. Как видно из рисунка 4. где изображены нии равных прогибов зеркальной поверхности (в разрывах линий на величина прогиба в микрометрах). при больших углах наклона 3 > 60° абсолютные значения прогибов зеркала незначительны, но нин изолиний на зеркальной поверхности сильно отличаются от ружностей.

Литература

I. Паймушин В.Н., Одиноков А.Ю. К линейной теории двухслойих оболочек со слоями переменной толщины. - В межвуз. сб.: Вопсм прочности и долговечности авиационных конструкций, вып. 4, ибышев, КуАИ, 1978, с. 19-25.

 Паймущин В.Н., Галимов Н.К. К общей теории трехслойных болочек со слоями переменной толщины. – В сб.: Труды семинара э теории оболочек, вып. 6, Казань, Казанский физико-технический (-т АН СССР, 1975, с. 7-20.

3. Поймущин В.Н.,. Одиноков А.Ю. Разрешающие уравнения для кухслойных оболочек вращения со слоями переменной толщины при ссимметричных деформациях. – В межвуз. сб.: Динамика и прочость авиационных конструкций, вып. 4, Новосибирск, НГУНЭТИ, 978. с. 176-183.

4. Одиноков А.Ю. Некоторне результаты численного исследоваим напряженно-деформированного состояния двухслойных осесимметичных ободочек врещения. - В межвус. сб.: Прочность, устойчиость и колебания тсикостенных и монолитных авиационных конструкий. Казань, 1980, с.68-71.

5. Паймушин В.Н. Некоторые задачи статики замкнутых оболочен

сложной формы и об одном методе их численного решения. -В межвуз. сб.: Вопросы расчета прочности конструкции летательных анпаратов, вып. 2, Казань, КАИ, 1979, с. 67-75.

 Вахитов М.Б. Интегрирукщие матрицы — аппарат численного решения дифференциальных уравнений строительной механики. — ИВУЗ, Авиационная техника, 1966, # 3, с. 50-61.

7. Вехитов М.Б., Сафариев М.С., Снигирев В.Ф. Расчет крыльевых устройств судов на прочность. - Казань: Таткнигоиздат, 1975. - 212 с.

 Григоренко Я.М. Изотропные и анизотропные слоистые оболочки вращения переменной жесткости. – Киев: Наукова думка, 1973. – 228 с.

9. D'Silva E. Bending of perforated plates. Transactions of the American Society of Mechanical Engineers, Ser. E., 1962, V.29, N4, 749-750.

УДК 629.7.015.4:539.3

Б.А.Коновалов, Е.А.Пеньков

РАСЧЕТ СКОШЕННОЙ КОНИЧЕСКОЙ ОБОЛОЧКИ ПРИ ДЕЙСТВИИ ОБОЕЩЕННЫХ ПОТОННЫХ И СОСРЕДОТОЧЕННЫХ ПОПЕРЕЧНЫХ НАГРУЗОК

Особенность работы скошенных оболочек состоит в том, что вследствие косого закрепления поперечные нагрузки вызывают как изгиб, так и кручение конструкции, иначе, в таких оболочках изгиб не отделяется от кручения. Определение напряженно-деформированного состояния в скошенных или стреловидных оболочках, нагруженных обобщенными погонными и сосредоточенными поперечными нагрузками, является целью настоящего исследования. Задача состоит в том, чтобы получить елгоритмы для напряжений и перемещений в стреловидном кессонном крыле самолета.

Исследовение проводится на основе обобщенного метода перемещений вкадемика Образдова И.Ф. /I, 2, 3/ с использованием пространственных функций депланации и точечных граничных условий в сечении косой заделки.

Продольное $\mathcal{U}(z, s)$ и поперечное v(z, s) перемещения точек