ках (рис.5, 6) показывает, что все особенности двухмассовой схемы проявляются при малых значениях относительной жесткости основания К. Сувеличением К. на всех фиксированных частотах $|\bar{x}_{+}|$

стремится к единице, при этом $\widetilde{\omega}_{\phi_1} \rightarrow 0$, а $\widetilde{\omega}_{\phi_{2,3,4}} \sim \infty$. Это соответствует переходу к предельной одномассовой механической модели.

4. Чем выше относительная жесткость подшипника γ^2 , тем круче изменяются характеристики. Значит, при использовании явления антирезонанса следует γ^2 выбирать возможно большим.

Таким образом, анализ АЧХ двухмассовой модели ротора показал их сильную зависимость от относительных параметров μ , γ^2 , К и Δ_1 и выявил наиболее удобный диапазон их изменения при проектировании ротора.

Литература

I. Ruzicka I.E., Cavanaugh R.D. New method for vibration isolation -- Machine Design, 1958, v. 30, No 90, p. p. 114-121.

2. Синев А.В., Степанов Ю.В. К определению оптимального демифи рования виброзащитных систем. - М.: Изв. вузов, Машиностроение, № 1 1985, с. 32-36.

3. Керк, Гантер. Влияние податливости и демифирования опор на синхронные движения одномассового гибкого ротора. - Труды ASME, т. 94, № I, 1972, с.230-240.

УДК 678.5:629.023.44:539.43

Г.П.Зайцев

ДОЛГОВЕЧНОСТЬ НЕСУЩЕЙ КОМПОЗИТНОЙ ЛОПАСТИ ВЕРТОЛЕТА. ПОСЛЕ БАЛЛИСТИЧЕСКОГО ПОВРЕЖДЕНИЯ

В процессе монтажа лопасти или ее эксплуатации в ней могут воз никнуть повреждения от воздействия падающего или, проще сказать, движущегося инородного тела. Результат воздействия такого тела на лопасть может бить следующим: лопасть останется без повреждения, будет иметь несквозное повреждение (вмятина, расслоение), будет иметь сквозное повреждение (отверстие). Вид и характер повреждения зависят от геометрической формы и энергии воздействующего инородного тела.

Предположим, что круглое тело совершает удар по сртотрошной прямоутольной пластине размерами ск « в . Дифференциальное уравмение вынужденных поперечных колебаний, согласно /1/, будет таким:

$$\frac{\partial^2 W}{\partial t^2} + \frac{1}{\rho h} \left(D_1 \frac{\partial^4 W}{\partial x^4} + 2 D_3 \frac{\partial^4 W}{\partial x^2 \partial y^2} + D_2 \frac{\partial^4 W}{\partial y^4} \right) = \frac{1}{\rho h} \varphi(x, y, t),$$
(I)

где

$$D_{1} = \frac{E_{1}h^{3}}{12(1-\gamma_{1}\gamma_{2})}, \quad D_{2} = \frac{E_{2}h^{3}}{12(1-\gamma_{1}\gamma_{2})}, \quad D_{\kappa} = \frac{G_{12}h^{3}}{12}$$

$$D_{3} = D_{1} \sqrt[3]{2} + D_{\kappa} = \frac{h^{3}}{12} \left(\frac{E_{1}}{1 - \sqrt{1}\sqrt{2}} \sqrt[3]{2} + 2G_{12} \right),$$

 β - плотность материала пластинки; h - толщина; E, , E₂, G₁₂, λ_1 , λ_2 - характеристики упругости ортотропного материала плас-тины.

Предположим, что внедрение тела в материал пластины при статическом нагружении описывается уравнением /2/:

$$z = KP^{\frac{2}{3}}$$
, (2)

где Z – величина внедрения; Р – величина действующей нагрузки; К – коэффициент пропорциональности.

Benurymea K , COTRACHO /2/, OUPERENSETCH TAK:

$$K = \sqrt{\frac{9}{16 R} \left(\frac{1-\sqrt{2}}{E} + \frac{1-\sqrt{np}}{E np}\right)^2},$$
(3)

где R, Е и γ – радиус и характеристики упругости внедряемого тела; Е_{пр}, γ_{np} – характеристики упругости ортотропного материала, приведенного к изотропному материалу, при этом

$$\frac{1 - \hat{V}_{np}}{E_{np}} = \frac{C_{11} C_{33} - C_{13}^2}{2 C_{11} (\sqrt{a_{o1}} + \sqrt{a_{o2}})}$$
(4)

Величины Со, и Сог определяют из уравнения /3/:

$$C_{44} \alpha_{o}^{2} + \left[\left(C_{13} + C_{44} \right)^{2} - C_{44} C_{33} - C_{44}^{2} \right] \alpha_{o} + C_{33} C_{44} = 0 , \qquad (5)$$

$$C_{44} = E \frac{1 - \left(\frac{\gamma}{2} \right)^{2} \frac{E}{E^{2}}}{\left(1 - \frac{\gamma}{2} \right) \left[1 - \frac{\gamma}{2} - 2\left(\frac{\gamma}{2} \right)^{2} \frac{E}{E^{2}} \right]}, \qquad C_{44} = G',$$

где

$$C_{33} = E' \frac{1 - \sqrt{1 - \sqrt{1 - 2(\sqrt{1})^2 \frac{E}{E_1}}}, \quad E' = E, \quad G' = \frac{2G_{23}G_{13}}{G_{13} + G_{23}},$$

$$C_{13} = E \frac{\sqrt{1 - \sqrt{1 - 2(\sqrt{1})^2 \frac{E}{E_1}}}, \quad \sqrt{1 - \frac{\sqrt{32 + \sqrt{31}}}{2}},$$

$$\sqrt{1 - \frac{1}{G_{12}} + 6\frac{\sqrt{12}}{E_1} - \frac{1}{E_1} - \frac{1}{E_2}},$$

$$\sqrt{1 - \frac{1}{G_{12}} + 6\frac{\sqrt{12}}{E_1} - \frac{1}{G_{12}} - 2\frac{\sqrt{12}}{E_1}},$$

$$E = \frac{8}{\frac{3}{E_1} + \frac{3}{E_2} + \frac{1}{G_{12}} - 2\frac{\sqrt{12}}{E_1}}.$$

Для решения уравнения (I) используем методы операционного исчисления. Примение преобразование Лапласа /4/, получаем уравнение (I) в виде:

$$\frac{\partial^2 W^*}{\partial t^2} + \frac{1}{\rho h} \left(D_1 \frac{\partial^4 W^*}{\partial x^4} + 2 D_3 \frac{\partial^4 W^*}{\partial x^2 \partial y^2} + D_2 \frac{\partial^4 W^*}{\partial y^4} \right) = \frac{1}{\rho h} q^*(x, y, \rho).$$
(6)

При рассмотрении пластины с шарнирным опиранием решение (6) осуществляется при использовании представления W в виде:

$$W^{*}(x, y, p) = \sum_{m, n=1}^{\infty} A_{mn}(p) \sin \frac{m \pi x}{\alpha} \sin \frac{n \pi y}{\beta}.$$
 (7)

В пространстве изображений $q^*(x, y, p) = P^*(p)$. Представляя $P^*(p)$ в виде (7) и подставляя $P^*(p)$ и (6) в (5), получаем:

$$W^{*}(x,y,p) = \frac{4P^{*}(p)}{abhp} \sum_{m,n=1}^{\infty} \frac{\sin \frac{m\pi x_{1}}{a} \sin \frac{n\pi y_{1}}{b} \sin \frac{m\pi x}{a} \sin \frac{n\pi y_{1}}{b}}{p^{2} + \omega_{mn}^{z}} \cdot (8)$$

Tak kak $P^{*}(p) = P(t)$, TO IIO TEOPEME O CBEPTKE EMEEM:

$$W(x,y,t) = \frac{4}{abhp} \sum_{m,n=1}^{\infty} \frac{\sin \frac{m\pi x_{1}}{a} \sin \frac{n\pi y_{1}}{b} \sin \frac{m\pi x}{a} \sin \frac{n\pi y_{1}}{b}}{\omega_{mn}} \times \int_{0}^{t} P(t_{1}) \sin \omega_{mn} (t - t_{1}) dt_{1}.$$
(9)

- 9I -

кого тела и оставлян по одному члену в уравнениях (6), (7) ж (8), колучим: <u>3</u>

$$P(t) = \frac{(v_{\circ}t)^{\overline{z}}}{\Gamma(\frac{5}{2})\kappa^{\frac{3}{2}}} - \frac{3}{412} \cdot \frac{v_{\circ}^{2}t^{4}}{\kappa^{3}m_{1}}, \qquad (10)$$

где U_o - начальная скорость сближения центров инерции сферического тела и пластинки; m₁ - масса сферического тела.

В случае, если сферическое тело не пробивает пластинку, то время взаимодействия сферического тела и пластинки определяется из формулы

$$t = \sqrt[5]{\left(\frac{16}{\Gamma(\frac{5}{2})}\right)^2 \cdot \frac{\kappa^3}{V_o} m_1^2} .$$
 (II)

Время, при котором $P(t) = P_{max}$, равно

$$t = \sqrt[5]{\frac{36}{\left[\Gamma\left(\frac{5}{2}\right)\right]^2} \cdot \frac{\kappa^3}{V_o} m_1^2}.$$
 (12)

Если тело пробивает пластинку при больших скоростях, то

$$t = \frac{h}{V_o}, \qquad (13)$$

а если тело пробивает анизотропную пластинку с заметной потерей скорости, то

$$t = \frac{m_1 (2hV_o - 1/4h^2V_o^2 - \frac{4h^2}{m_1}(E_P + E_n))}{E_P + E_n}, \quad (14)$$

где Е, , Е, - энергия изгиба и разрушения соответственно.

Для определения прогиба в первом приближении воспользуемся зависимостью, которую можно получить, используя денные работы /I/:

$$W(x, \frac{\alpha}{2}, y) = \frac{2P(t)\beta^2}{\pi^3 \sqrt{D_1 D_2}} \operatorname{Re} \left\{ \frac{1}{S_1^2 - S_2^2} \sin \frac{\pi y}{\theta} \left[\frac{S_1}{ch \frac{\pi S_2 \alpha}{2\beta}} \times \frac{S_2}{b} + \frac{S_1 \frac{\pi S_2}{2\beta}}{ch \frac{\pi S_1 \alpha}{2\beta}} + \frac{S_2}{ch \frac{\pi S_1 \alpha}{2\beta}} + \frac{S_1 \frac{\pi S_2}{2\beta}}{ch \frac{\pi S_1 \alpha}{2\beta}} \right\}$$
(15)

Тогда напряжения G_x, G_y и C_{xy} определяются по формулам:

$$\mathcal{G}_{\mathbf{x}} = -\frac{12}{h^3} \mathcal{I} \left(D_1 \frac{\partial^2 W}{\partial x^2} + D_{12} \frac{\partial^2 W}{\partial y^2} \right); \ \mathcal{G}_{\mathbf{y}} = -\frac{12}{h^3} \mathcal{I} \left(D_{12} \frac{\partial^2 W}{\partial x^2} + D_2 \frac{\partial^2 W}{\partial y^2} \right); \ \mathcal{T}_{\mathbf{x}\mathbf{y}} = -\frac{24}{h^3} \mathcal{I} D_{\mathbf{x}} \frac{\partial^2 W}{\partial x \partial y} \cdot (\mathbf{16})$$

Сила в процессе удара меняется от 0 до максимальной величины и от максимальной величины до нуля. При этом ударяемое тело либо пробивает ортотропную пластинку, либо повреждает ее, либо отскакивает от нее. Все это определяется прочностью пластины и величиной динамической сили.

По критерию прочности для анизотропного тела можно предсказать эти три случая. При этом пробивание пластины возникает в том случае, если действующее напряжение вдоль основного армирования превышает предел прочности материала в этом направлении

$$G_{\mathbf{x}} + G_{\mathbf{x}}^{\circ} \ge G_{\mathbf{x}}^{\mathsf{P}} , \qquad (17)$$

где б - действующее эксплуатационное напряжение в лопасти.

Далее будем рассматривать лопасть из армированного пластика со сквозным повреждением в виде отверстия. Реальные повреждения лопас тей можно представить в виде сквозного отверстия с кругоным или с эллиптическим контуром. При этом повреждения в виде отверстия с аллиптическим контуром могут иметь большую ось, параллельную оси лопасти или перпендикулярную к ней. Повреждения встречаются равновероятно по хорде лопасти. Размеры повреждений разнообразные: малая ось эллипса – от 5 мм до 14 мм, большая ось эллипса от 5 мм до 80 мм. Края повреждений не гладкие по контуру, длина расслоения по плоскости лопасти от контура отверстия существенным образом зависит от положения слоя. Поверхностные слои сечения имеют расщепления от 5 до 25, нижележащие слои – от 2 до 8, средние слои – от 0,5 до 1,0 характерного размера отверстия.

Напряженное состояние лопасти с повреждением можно описать как напряженное состояние пластины с отверстием. Принимая во внимание в дальнейшем воздействии на лопасть только центробежной силы и чистого изгибающего момента в плоскости взмаха, можно показать, что в направлении оси лопасти действуют только нормальные напряжения, постоянные по толщине и ширине полки.

Используя основные положения расчета напряженного состояния растягиваемой анизотропной пластины со сквозным эллиптическим

- 92 -

отверстием по работе /5/, будем иметь:

$$\mathcal{G}_{x\max} = \mathcal{G}\left[1 + (\mu_1 + \mu_2)\frac{b}{a}\right], \qquad (18)$$

где G – номинальные напряжения, действующие на бесконечности; $\mu_1 = 2,71$ и $\mu_2 = 0,33$ – параметры упругости исследуемого материала, получаемые из корней $S_1 = i \mu_1$, $S_2 = i \mu_2$ уравнения

$$S^{4} + \left(\frac{E_{1}}{G_{12}} - 2\tilde{v}_{12}\right)S^{2} + \frac{E_{1}}{E_{2}} = 0.$$
 (19)

Здесь Е₁ = 52,9·10³ МПа и Е₂ = 18,8·10³ МПа – модули упругости исследуемого материала в направлении x и y соответственно; $G_{12} = 6,33\cdot10^3$ МПа и $v_{12} = 0,232$ – модуль сдвига материала, коэффициент Пуассона в плоскости I2; са и 6 – полуоси эллипса в направлении осей x и y соответственно.

Испытания лопастей с повреждением проводили на специальных стендах, обеспечивающих осевое нагружение постоянной силой и нагружение переменным чистым изгибающим моментом. Уровень переменных амплитудных напряжений устанавливался на основе возбуждения изгибных колебаний лопасти в условиях резонанса или в условиях, близких к ним. Разрушение лопастей наблюдалось по резкому уменьшению частоты колебаний из-за прорастания трещины и сильной потери жесткости лопасти. Трещины прорастали в зоне повреждения, имея начало на контуре отверстия. Разрушение лопасти (потеря жесткости) наблюдалось всегда в сечении лопасти, проходящем через повреждение.

Результаты экспериментальных иоследований представлены в таблице I. Видно, что повреждения значительно уменьшают долговечность лопастей; в отдельных случаях долговечность меняется в 10⁴ раз, в среднем для данных исследований долговечность лопастей уменьшается в 3,5·10³ раз. В то же время направленность оси отверстия повреждения может изменить долговечность в 10 раз. Появление повреждения в виде отверстия приводит к существенному местному увеличению уровня действующих нормальных напряжений, особенно на контуре отверстия.

Для согласования экспериментальных результатов и расчетных данных введен параметр, называемый чувствительностью материала к концентрации напряжений. С учетом этой чувствительности будем определять эффективный коэффициент концентрации напряжений К_о /6/:

 $K_{G} = 1 + q_{G}(\alpha_{G} - 1),$ (20)

где \measuredangle_{G} - теоретический коэффициент концентрации напряжений; 9₆ - чувствительность к концентрации нормальных напряжений.

Таблица I

№ лопасти	6 _т , кг/мм ²	ба, кт/мм ²	b a	Ν _Ρ , τεσρ.	<i>N_ρ</i> , эксп.	№ , без повреж- пенжий
I	8,25	±5,5	I	6,99 •10 ⁶	7,12.10 ⁶	2,7.IO ^{IO}
2	7,2I	± 6	0,6	5,043.I0 ⁷	2·10 ^{7 ¥)}	I,I.I0 ^{I0}
3	7,2I	± 6	I	3,33·I0 ⁶	3,76.IO ⁶	I,I.I0 ^{I0}
4	7,2I	± 6	I,2	0,962·I0 ⁶	0,97·I0 ⁶	I,I·I0 ⁶

ж) - не разрушился

Тогда с учетом (20) уравнение усталости лопасти можно представить в виде

$$\left(\frac{\kappa_{\mathcal{G}}\,\mathcal{G}_{a}}{\mathcal{G}_{g}-\kappa_{\mathcal{G}}\,\mathcal{G}_{m}}\right)^{m}\cdot N_{p} = \text{const}.$$
(21)

Для лопастей из кордного стеклопластика данной укладки будем иметь

$$\left(\frac{0.28Ga}{100-0.28Gm}\right)^{11,88} = 0,816\cdot10^{-4}.$$
 (22)

Величина q = 0,28 для данного кордного пластика определена из экспериментальных данных. Расчетные данные чисел циклов до разрушения лопастей с различными повреждениями при разных условиях нагружения представлены в таблице I. Из таблицы следует удовлетворительное совпадение экспериментальных данных и расчетных результатов.

Экспериментально показано, что рассматриваемые лопасти без повреждений и дефектов имеют при эксплуатационных нагрузках весьма высокую долговечность. Уравнение усталости таких лопастей соответствует (21) при К_Б = I.

Литература

I. Лехницкий С.Г. Анизотропные пластики. - М.: ГИТТЛ, 1957. - 463 с.

2. Кильчевский Н.А. Динамическое контактное сжатие твердых тел. Удар. - Киев: Наукова Думка, 1976. - 314 с.

3. Серенсен С.В., Зайцев Г.П. Несущая способность тонкостенных конструкций из армированных пластиков с дефектами. - Киев: Наукова Думка, 1982. - 294 с.

4. Деч Г. Руководство к практическому применению преобразования Лапласа. - М.: IVGMI, 1958. - 207 с.

5. Савин Г.Н. Концентрация напряжений около отверстий. - М-Л.: ГИТЛ, 1951. - 496 с.

6. Серенсен С.В., Когаев В.П., Шнейдерович Р.М. Несущая способность и расчеты деталей машин на прочность. - М.: Машиностроение, 1975. - 488 с.

УДК 629.7.017.1

Т.Д.Коваленко, Э.И.Миноранский С.Н.Перов, Ю.Л.Фарасов

ОЩЕНКА ОСТАТОЧНОГО РЕСУРСА ЭЛЕМЕНТОВ КОНСТРУКЦИИ, ИМЕЮЩИХ ПРОИЗВОДСТВЕННЫЕ ИЛИ ЭКСПЛУАТАЦИОННЫЕ ПЕФЕКТЫ

Конструкция летательных аппаратов содержит силовые элементы, различающиеся по своему функциональному назначению. Во время эксплуатации в материале некоторых силовых элементов может образоваться макроскопическая трещина в результате накопления рассеянных повреждений. Эта трещина далее растет по тем же закономерностям, что и трещина технологического происхождения. Стадия пакопления рассеянных повреждений может составлять от 50 до 90 % от общего ресурса /I/.

Анализ состояния реальных конструкций показывает, **что** нри производстве силовых элементов возможно образование начальных технологических неконтролируемых дефектов (непроваров, пор, включений, растрескиваний и т.п.) как в основном материале, так и в зоне сварных швов или заклепочных соединений. Материал конструкции может иметь также металлургические трещиноподобные дефекты.