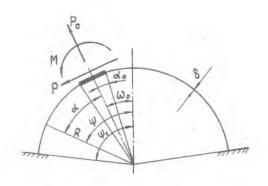
И.С. Ахмедьянов, В.В. Горбатенко

ИССЛЕДОВАНИЕ НАПРЯЖЕНИИ В СФЕРИЧЕСКОИ ОБОЛОЧКЕ, НАГРУЖЕННОЙ ЧЕРЕЗ ЭКСИЕНТРИЧНО РАСПОЛОЖЕННУЮ ЖЕСТКУЮ ШАЙБУ

В работе [I] рассматривалась задача о напряженном и деформированном состоянии сферической оболочки, нагруженной силой и моментом, передающимися на нее через эксцентрично впаянную жесткую круглую шайбу (рис. I). Были получены рас-



Puc. I

четные формулы для вычисления напряжений и перемещений и записаны граничные условия для случая жесткого защемления нижнего края оболочки. Эти условия, ввиду непараллельности плоскостей шайбы и опорной параллели оболочки, свелись к бесконечной системе линейных алгебраических уравнений относительно произвольных постоянных интегрирования.

Ниже предлагается способ упрощения этой системы уравнений и приводятся результаты численных расчетов.

І. В бесконечной системе уравнений, описывающих условия закрепления оболочки по нижнему краю $\psi = \psi$ [I], неизвестными являются три группы постоянных: C_{κ} , D_{κ} ($\kappa \geqslant 2$), C_{κ}^{*} , $\mathbb{D}_{\kappa}^{\star}$ ($\kappa \geqslant 0$) и \mathbb{C}_{4n} , \mathbb{D}_{4n} ($n \geqslant 0$). Такое большое количество неизвестных создает серьезные трудности при решении системы.

Имеется возможность значительно упростить задачу,выразив значения C_{κ} , D_{κ} , C_{κ}^* , D_{κ}^* через $C_{2\kappa}$, $D_{2\kappa}$ ($\kappa \geqslant 2$), использун условия сопряжения оболочки с жесткой шайбой [I] :

$$C_{\kappa} F_{\kappa} - D_{\kappa} \mathcal{Y}_{\kappa} + C_{\kappa}^{*} F_{\kappa}^{*} + D_{\kappa}^{*} \mathcal{Y}_{\kappa}^{*} = \alpha_{\kappa} ,$$

$$C_{\kappa} F_{\kappa} + D_{\kappa} \mathcal{Y}_{\kappa} - C_{\kappa}^{*} F_{\kappa}^{*} + D_{\kappa}^{*} \mathcal{Y}_{\kappa}^{*} = \delta_{\kappa} ,$$

$$C_{\kappa} X_{\kappa} + D_{\kappa} \mathcal{Y}_{\kappa} - C_{\kappa}^{*} X_{\kappa}^{*} + D_{\kappa}^{*} \mathcal{Y}_{\kappa}^{*} = C_{\kappa} ,$$

$$C_{\kappa} \Gamma_{\kappa} - D_{\kappa} - C_{\kappa}^{*} X_{\kappa}^{*} + D_{\kappa}^{*} \Delta_{\kappa}^{*} = d_{\kappa} ,$$

$$C_{\kappa} \Gamma_{\kappa} - D_{\kappa} - C_{\kappa}^{*} \Gamma_{\kappa}^{*} + D_{\kappa}^{*} \Delta_{\kappa}^{*} = d_{\kappa} ,$$

$$C_{\kappa} \Gamma_{\kappa} - D_{\kappa} - C_{\kappa}^{*} \Gamma_{\kappa}^{*} + D_{\kappa}^{*} \Delta_{\kappa}^{*} = d_{\kappa} ,$$

$$C_{\kappa} \Gamma_{\kappa} - D_{\kappa} - C_{\kappa}^{*} \Gamma_{\kappa}^{*} + D_{\kappa}^{*} \Delta_{\kappa}^{*} = d_{\kappa} ,$$

$$C_{\kappa} \Gamma_{\kappa} - D_{\kappa} - C_{\kappa}^{*} \Gamma_{\kappa}^{*} + D_{\kappa}^{*} \Delta_{\kappa}^{*} = d_{\kappa} ,$$

$$C_{\kappa} \Gamma_{\kappa} - D_{\kappa} - C_{\kappa}^{*} \Gamma_{\kappa}^{*} + D_{\kappa}^{*} \Delta_{\kappa}^{*} = d_{\kappa} ,$$

$$C_{\kappa} \Gamma_{\kappa} - D_{\kappa} - C_{\kappa}^{*} \Gamma_{\kappa}^{*} + D_{\kappa}^{*} \Delta_{\kappa}^{*} = d_{\kappa} ,$$

$$C_{\kappa} \Gamma_{\kappa} - D_{\kappa} - C_{\kappa}^{*} \Gamma_{\kappa}^{*} + D_{\kappa}^{*} \Delta_{\kappa}^{*} = d_{\kappa} ,$$

$$C_{\kappa} \Gamma_{\kappa} - D_{\kappa} - C_{\kappa}^{*} \Gamma_{\kappa}^{*} + D_{\kappa}^{*} \Delta_{\kappa}^{*} = d_{\kappa} ,$$

$$C_{\kappa} \Gamma_{\kappa} - D_{\kappa} - C_{\kappa}^{*} \Gamma_{\kappa}^{*} + D_{\kappa}^{*} \Delta_{\kappa}^{*} = d_{\kappa} ,$$

$$C_{\kappa} \Gamma_{\kappa} - D_{\kappa} - C_{\kappa}^{*} \Gamma_{\kappa}^{*} + D_{\kappa}^{*} \Delta_{\kappa}^{*} = d_{\kappa} ,$$

$$C_{\kappa} \Gamma_{\kappa} - D_{\kappa} - C_{\kappa}^{*} \Gamma_{\kappa}^{*} + D_{\kappa}^{*} \Delta_{\kappa}^{*} = d_{\kappa} ,$$

$$C_{\kappa} \Gamma_{\kappa} - D_{\kappa} - C_{\kappa}^{*} \Gamma_{\kappa}^{*} + D_{\kappa}^{*} \Delta_{\kappa}^{*} = d_{\kappa} ,$$

$$C_{\kappa} \Gamma_{\kappa} - D_{\kappa} - C_{\kappa}^{*} \Gamma_{\kappa}^{*} + D_{\kappa}^{*} \Delta_{\kappa}^{*} = d_{\kappa} ,$$

a = -,2 y (1+ 4) (C2 62 62 + D2 72),

$$\beta_{\kappa} = -\frac{2\kappa\chi\left(4+\mu\right)}{\sin\alpha_{o}}\left(C_{2\kappa} \otimes_{2\kappa} + \mathbb{D}_{2\kappa} \tau_{2\kappa}\right),$$

Здесь значения функции F_{κ} , ... , Δ_{κ} и G_{κ} , ... , d_{ν} coordenstrypr yray $d = d_{\nu}$

Рассматривая (I) как систему уравнений относительно ${\Bbb C}_{\bf k}$, ${\Bbb C}_{\bf k}^*$ и ${\Bbb D}_{\bf k}^*$, вычислим ее определитель:

$$\widetilde{D}_{K} = \begin{pmatrix} F_{K} - \mathcal{G}_{K} & F_{K}^{*} & \mathcal{G}_{K}^{*} \\ F_{K} & \mathcal{G}_{K} - F_{K}^{*} & \mathcal{G}_{K}^{*} \\ Y_{K} & Y_{K} - X_{K}^{*} & Y_{K}^{*} \\ F_{K} - \Delta_{K} & \Gamma_{K}^{*} & \Delta_{K}^{*} \end{pmatrix} = -\frac{4\kappa (1+\mu)^{2}}{\sin^{3}\alpha_{o}}.$$

Это простое выражение позволяет следующим образом выразить C_{κ} , . . , D_{κ}^{*} через $C_{2\kappa}$ и $D_{2\kappa}$:

$$C_{\kappa} = \frac{a_{\kappa} + \beta_{\kappa}}{2(1 + \mu)} Q_{1}^{\kappa} \sin \alpha_{o} - \frac{\kappa C_{\kappa} + d_{\kappa} \sin \alpha_{o}}{2\kappa (1 + \mu)} \operatorname{ctg}^{\kappa} \frac{\alpha_{o}}{2} \sin^{2} \alpha_{o},$$

$$D_{\kappa} = -\frac{\alpha_{\kappa} - b_{\kappa}}{2(1+\mu)} P^{\kappa}, \sin \alpha_{o} - \frac{\kappa c_{\kappa} - d_{\kappa} \sin \alpha_{o}}{2\kappa(1+\mu)} tg^{\kappa} \frac{\alpha_{o}}{2} \sin^{2}\alpha_{o},$$

$$C_{\kappa}^{*} = -\frac{a_{\kappa} - b_{\kappa}}{4\kappa(\kappa^{2} - 1)} Q_{+}^{\kappa} \sin \alpha_{o} - \frac{\kappa c_{\kappa} - d_{\kappa} \sin \alpha_{o}}{4\kappa^{2}(\kappa^{2} - 1)} \left[\frac{2\kappa}{\sin^{2}\alpha_{o}} Q_{+}^{\kappa} - ctg^{\kappa} \frac{\alpha_{o}}{2} \right] \sin^{2}\alpha_{o},$$

$$D_{\kappa}^{*} = -\frac{a_{\kappa} + b_{\kappa}}{4\kappa(\kappa^{2} + 1)} P_{1}^{\kappa} \sin \alpha_{o} + \frac{\kappa c_{\kappa} + d_{\kappa} \sin \alpha_{o}}{4\kappa^{2}(\kappa^{2} + 1)} \left[\frac{2\kappa}{\sin^{2}\alpha_{o}} P_{1}^{\kappa} - tg^{\kappa} \frac{\alpha_{o}}{2} \right] \sin^{2}\alpha_{o}.$$

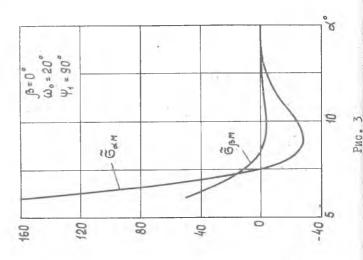
Подставляя этот результат в граничные условия для края $\psi = \psi$, получаем бесконечную систему уравнений относительно $C_{2\kappa}$, $D_{2\kappa}$ ($\kappa > 2$), C_{4n} , D_{1n} (n > 0) и C_4^* , D_4^* , C_8^* .

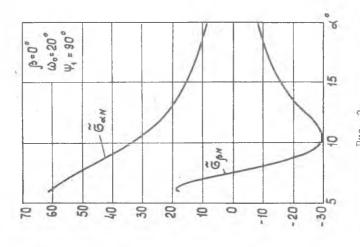
2. На ЭВМ БЭСМ-4 были проведены численные исследования оболочек при нагружении радиальной силой P_{o} . На рис. 2 и 3 представлены результаты расчета для оболочки с параметрами (в дальнейшем эту оболочку будем называть основной):

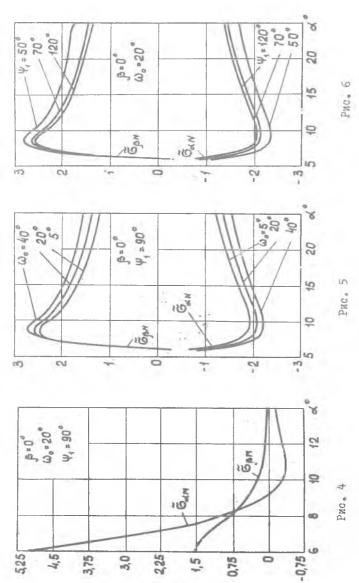
R = I50cm,
$$\delta = 0.3$$
 cm, $\alpha_0 = 6^{\circ}$, $\omega_0 = 20^{\circ}$, $\psi_1 = 90^{\circ}$, $\mu = 0.3$, $E = 7 \cdot 10^{5}$ kr/cm².

На графиках через $\widetilde{G}_{\text{dN}}$, $\widetilde{G}_{\text{pN}}$, $\widetilde{G}_{\text{dM}}$ и $\widetilde{G}_{\text{pM}}$ обозначени безразмерные напряжения, определяемые формулами:

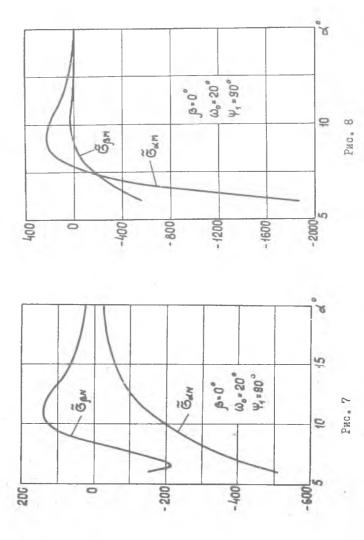
$$\widetilde{G}_{dN} = \frac{N_d}{\widetilde{G}^{\circ} \delta}, \quad \widetilde{\widetilde{G}}_{\beta N} = \frac{N_{\beta}}{\widetilde{G}^{\circ} \delta}, \quad \widetilde{\widetilde{G}}_{dM} = \frac{6M_d}{\widetilde{G}^{\circ} \delta^2}, \quad \widetilde{\widetilde{G}}_{\beta M} = \frac{6M_{\beta}}{\widetilde{G}^{\circ} \delta^2}.$$
 (2)







5-6853



Вдесь
$$6^{\circ} = \frac{P_{\circ}}{2\pi R \delta}$$
, , N_{β} — нормальные усили

Здесь $6^{\circ} = \frac{P_{\circ}}{2\pi R \delta}$, N_{β} - нормальные усилия; M_{α} , M_{β} - изгибающие моменты. Анализ выполненных расчетов показал, что при нагружении

оболочки радиальной силой изменение эксцентриситета ω_o положения шайбы от 0° до 40° и угла ψ от 50° до 120° практически не оказывают влияния на значения и распределение напряжений в оболочке вблизи шайбы.

3. Результаты расчета основной оболочки на действие касательной силы Р показаны на рис. 4 и 5. Кривые соответствуют меридиану $\beta = 0^{\circ}$. Значения \widetilde{G}_{dN} , $\widetilde{\widetilde{G}}_{\beta N}$, $\widetilde{\widetilde{G}}_{dM}$, бом вычислялись по формулам (2) при

Расчеты, проведенные для углов $\,\omega_{\rm o}$ от $\,5^{\rm O}$ до $\,40^{\rm O}$ и $\,\psi_{\rm o}$ от $\,50^{\rm O}$ до $\,120^{\rm O}$, показали, что их изменение почти не влияет на величину и распределение изгибных напряжений $\widetilde{\mathfrak{S}}_{\mathsf{AM}}$ и $\widetilde{\mathfrak{S}}_{\mathsf{BM}}$ в оболочке около шайбы. Что касается напряжений \widetilde{G}_{AN} и \widetilde{G}_{BN} , то характер их распределения существенно зависит от ω_o и ψ_* (рис. 5 и 6).

4. На рис. 7 и 8 изображены графики распределения безразмерных напряжений \widetilde{G}_{aN} , $\widetilde{G}_{\beta N}$, \widetilde{G}_{am} , $\widetilde{G}_{\beta M}$ по основной оболочке, вычисленных по формулам (2) при

$$G^{\circ} = \frac{M}{\Im R^2 \delta}.$$

Расчеты, выполненные для ряда других значений $\,\omega_{o}\,$ и $\,\psi_{o}\,$ привели к результатам, практически не отличающимся от значений, полученных для основной оболочки.

Литература

I. Аживныямов И.С. Расчет сферической оболочки, нагруженной через эксцентрично расположенную жесткую пайбу. Труды КуАИ, вып. 60, Куйбышев, 1973.