УДК 533.697.3

В.И. Епифанова, В.Ю. Шадрина, О.А. Ивакин

ПРИБЛИЖЕННАЯ МЕТОДИКА ТЕРМОГАЗОДИНАМИЧЕСКОГО РАСЧЕТА ИЛЕАЛЬНОЙ ВИХРЕВОЙ ТРУБЫ

Принятые обозначения:

 f_j — эквивалентный радиус соплового ввода; f_j — радиус диафрагмы холодного потока; f_j — радиус вихревой трубы в расчетном сечении; R — средний радиус входа потока сжатого газа в вихревую трубу; $\overline{f} = \frac{F}{R}$ — приведенный радиус; $\varphi = f - \frac{F_0}{f_0^2}$ — параметр, херактеризующий величину циркуляционной области.

Индексы:

O — параметры торможения; I,2,I — сечения соплового ввода, диафрагмы и расчетного сечения; U,UU — циркуляционная область и область вынужденного вихря; X,I' — холодный и горячий потоки; U,U — окружная и осевая скорости.

В статье рассматривается упрощенная математическая модель рабочего процесса вТ. Во вращающемся потоке предполагается наличие двух областей течения: с постоянной циркуляцией (свободный вихрь) и с постоянной угловой скоростью (вынужденный вихрь, вихревой шнур) радиуса $I_{\mathcal{B}}'$. Течение предполагается осесимметричным, все процессы-изоэнтропными. Начальная циркуляция определяется на радиусе \mathcal{R} .

В ВТ нами выделяется два сечения (рис. I). Через сечение I в рабочее пространство ВТ вводится одномерный поток сжатого газа m_{\star}

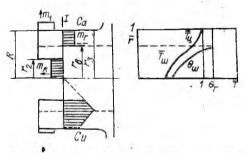


Рис. I. Схематичное изображение BT, эпюры скоростей и температур в рабочем пространстве

со скоростью C_f , причем в общем случае $C_f \geqslant C_{\mathcal{U},f}$; расчетное сечение I распо-лагается перед диафрагмой.

На рис. I схематично показаны эпюры осевых (\mathcal{C}_{α}) и тангенциальных (\mathcal{C}_{α}) скоростей, а также распределение полных и термодинамических температур в расчетном сечении I. Это сечение характеризуется тем,

что в циркуляционной области протекает поток $m_{ur}=m_r-m_\chi$, а из области вихревого шнура вытекает холодный поток m_χ . Холодный поток предполагается одномерным, и при $r \le r_2$ параметры газа считарого постоянными, вычисляемыми на некотором эквивалентном радиусе

В работе [I] изложена приближенная методика расчета вихревого эжектора при малых коэффициентах эжекции, опирающаяся на основные уравнения одномерного изоэнтропного потока идеального газа. Эта математическая модель применена нами для расчета идеальной неох-даждаемой ВТ.

Система дифференциальных уравнений движения Навье-Стокса в нашем случае сводится к уравнегию радиального равновесия, интегрируя которое в пределах $O-r_g$ и r_g-r_g в предположении немяменяемости удельного момента циркуляционного потока при отводе холодного газа m_χ , получим расчетные уравнения для определения термодинамических температур \overline{T}_w , \overline{T}_d и $\lambda_{\alpha\alpha}$. Прижеденная температура торможения Θ_r горячего потока $m_{\alpha I}$ находится из уравнений теплового баланса:

$$\overline{T}_{u} = \frac{T_{u}(\overline{r})}{T_{or}} = I - \frac{\kappa - 1}{\kappa + 1} \left(\frac{\lambda_{u1}^{2}}{\theta_{r} \overline{r}^{2}} + \lambda_{au}^{2} \right); \tag{I}$$

$$\overline{T}_{w} = \frac{T_{w}(\overline{F})}{T_{or}} = i - \frac{\kappa - i}{\kappa + i} \left[\frac{\lambda_{ui}^{2}}{\theta_{r} \overline{F}_{g}^{2}} \left(2 - \frac{\overline{F}^{2}}{\overline{F}_{g}^{2}} \right) + \lambda_{au}^{2} \right]; \tag{2}$$

$$\lambda_{\alpha u} = \left(\frac{2}{\kappa + 1}\right)^{\frac{1}{\kappa - 1}} \frac{G_{1}\left(1 - \mathcal{U}\right) Q_{1}\left(\lambda_{1}\right) \sqrt{\theta_{r}}}{\sqrt{p_{cp}} G_{1 - 1}} \left(\frac{r_{1}}{r_{3}}\right)^{2}.$$
 (3)

Из общего уравнения энергии, связывающего полные и термодинамические температуры газа, записанного для области вихревого шнура, получим уравнения для определения температур торможения:

ра, получим уравнения для определения температур торможения:
$$\theta_{\omega} = \frac{T_{\alpha\omega} \left(\vec{F}\right)}{T_{\alpha\Gamma}} = i - \frac{\kappa - i}{\kappa + i} \frac{2\lambda_{ui}^2}{\theta_{\Gamma} \bar{r}_{g}^2} \left(i - \frac{\bar{r}^2}{\bar{r}_{g}^2}\right); \tag{4}$$

$$\theta_{x} = \frac{T_{ox}}{T_{ox}} = \theta_{ux} \theta_{r} . \tag{5}$$

При выводе уравнения (4) предполагалось, что перемещение газа, находящегося в вихревой шнуре, в осевом направлении происходит со скоростью $\lambda_{aw}=\lambda_{au}$.

Давление холодного потока ho_{ox} перед диафрагмой

$$\rho_{ox} = \rho_{o1} \bar{\rho} (\bar{r}_{3}) = \left[\overline{T}_{\dot{w}} (\bar{r}_{3}) \right]^{\frac{\kappa}{\kappa - 1}} \rho_{o1}$$

доляно превывать давление $\rho_{\rm x}$ за диафрагмой для осуществления истечения газа со скоростью $\lambda_{\rm x}$, которой соответствует приведенное давление $\bar{\rho}_{\rm x} = \frac{\rho_{\rm x}}{\rho_{ox}} = \bar{\rho}\left(\lambda_{\rm x}\right)$. Величина μ находится из соотношения

$$\mathcal{H} = \frac{m_{A}}{m_{1}} = \frac{G_{2} \varphi \left(\lambda_{x}\right)}{\pi \bar{p}_{x} G_{1} \varphi \left(\lambda_{1}\right)} \left(\frac{r_{2}}{r_{1}}\right)^{2} \frac{1}{\sqrt{\theta_{x}}} \tag{6}$$

В работе [I] было показано, что величина вихревого шнура может быть определена исходя из принципа минимизации потока кинетической энергии газа в расчетном сечении. В первом прибликения для

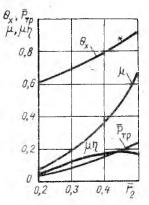


Рис. 2. Расчетная характеристика ВТ

бездиффузорного истечения горячего потока из ВТ можно искать минямум скорссти газа в трубке тока на границе вынужденного вих-ря. Это условие позволяет замкнуть расчетную систему уравнений.

На рис. 2 даны результаты расчета ВТ с приведенным радиусом соплового ввода $\overline{F}_1=0.316$ при $\lambda_1=\lambda_{U1}=1$, $\overline{F}_3=1$, $\psi=0.2$. В области максимума показателя энергетичесного совершенства $\mu \gamma$ при $\overline{F}_2=0.45$ расчетные величины следующие: $\overline{H}_1=0.45$ расчетные величины $\overline{H}_2=0.45$ расчетные деличины $\overline{H}_3=0.45$ распериментальным данным $\overline{H}_3=0.45$ величина $\overline{H}_3=0.45$ величина $\overline{H}_3=0.45$ величина $\overline{H}_3=0.45$

литература

- Епифанова В.И. Приближенная методика расчетного определения основных характеристик вихревого эжектора. Изв. вузов. Машиностроение, 1975. № 10.
- Меркулов А.П. Вихревой эффект и его применение и технике. - М.: Машиностроение. 1969.