lg 4. 0.4 0,2 0 -10 5,3.105 5.7.105 la Re+

Рис. 2. Коэффициент гидравлического сопротивления: I-4 соответственно $\mathcal{A} = 0, I; 0, 2; 0, 3; 0, 4$ ($\Sigma \vec{F}_{+} = = 0, 83; \vec{a} = 0, I5; 5-7 - \mathcal{A} = 0, 25; 0, 4; 0, 87$ ($\Sigma \vec{F}_{+} = 5, 5\%, \vec{a} = 0, 4; 8-11 - \vec{a} = 0, I; 0, 15; 0, 2;$ 0,3 ($\Sigma \vec{F}_{+} = 0, 83\%, \vec{A} = 0, I$)

способствует снижению энергозатрат, связанных с потерей тепла в окружающую среду. Кроме того, вихревые камеры с хордальной подачей теплоносителя, в отличие от обычных циклонных камер, обладают низкими значениями коэффициента гидравлического сопротивления.

Литература.

I. Абрамович Н.Г., Бухман М.А., Устименко Б.П. Исследование влияния условий входа на структуру течения и сопротивление циклонных камер. – В сб.: Проблемы теплоэнергетики и прикладной теплофизики. – Алма-Ата: Наука, КазССР, 1976, вып. II, с. 27-31.

удк 621.928.8

Б.П.Устименко, В.Н.Змейков, В.Б.Иванов, Е.М.Иванов, Б.О.Ривин

АЭРОДИНАМИКА ВИХРЕВОГО ПОТОКА В КОЛЬЦЕВОЙ ТОПОЧНОЙ КАМЕРЕ

Принятые обозначения

r - текущий радиус, (м); $d_i(r_i)$ -(радиус) диаметр условной окружности, вписанной в корпус, м; $d_i(r_i)$ - диаметр (радиус) ус-

ловной окружности, вписанной во встарку; $r-r_{,}/r_{,}-r_{2}$ — безразмерная радиальная координата; Z — расстояние от дна модели, м; Z — высота модели, м; $\overline{Z} = Z/L$ — безразмерная вертикальная координа — та; V — скорость газового потока, м/с; V_{φ} , V_{p} , V_{z} — вращательная радиальная и осевая составляющие вектора скорости, м/с;

 V_1, V_2, V_3 — скорости ввода первичного и вторичного воздуха и скорость на выходе соответственно, м/с; $V_{\varphi} = \frac{V_{\varphi}}{V_2}; V_{z} = \frac{V_{z}}{V_2}$ — сезразмерные составляющие скорости; $V'_{\varphi}; V'_{r}; V'_{z}$ — пульсации составляющих скорости, м/с; $\mathcal{E}_i = \sqrt{V_i^2}/\overline{W}$ — интенсивности пульсаций составляющих скорости; \mathcal{P} — статическое давление, H/M^2 ; $\overline{\mathcal{P}}=2P/\rho V_2^2$ — безразмерное статическое давление; $P_2; P_3$ — стати — ческое давление на срезе подводов и на выходе из модели соответственно, H/M^2 ; \mathcal{A} — угол установки подводов, град; \mathcal{P} — плот — ность воздуха, кг/M³; $\xi = 2\Delta P/\rho V_2^2$ — коэффициент аэродинамического сопротивления модели; $\Delta P = (P_2 + \rho V_2^2/2) - (P_3 + \rho V_3^2/2)$.

В данной работе приведены результаты экспериментального исследобания аэродинамических характеристик вихревого потока на изотермической модели кольцевой топки высотой $\mathcal{L} = 0.88$ м с диаметрами вписанных окружностей в многогранники корпуса и коаксиальной вставки $\mathcal{A}_{i} = 0.4$ м и $\mathcal{A}_{2} = 0.2$ м соответственно. Подводы воздуха располагались в центре каждой грани в нижней части модели, причем конструкция модели позволяла устанавливать оси горелки под углом $\mathcal{A} = 42, 62, 79^{\circ}$ к касательной, вписанной в окружность корпуса.

Получены данные о распределении составляющих вектора скорости $(\overline{V}_{\omega},\overline{V}_{\mu},\overline{V}_{\mu})$ и статического давления (\overline{P}) в объеме модели, а также распределение интенсивностей пульсаций осевой ($\mathcal{E}_{z} = \sqrt{V_{z}^{12}}/\overline{W}$). вращательной ($\mathcal{E}_{\varphi} = \sqrt{V_{\varphi}^{2}}/\overline{W}$) и радиальной ($\mathcal{E}_{r} = \sqrt{V_{r}^{2}}/\overline{W}$) составляющих скорости, одноточечных корреляций $V'_{\varphi}V'_{z'}/W^2$, $V'_{\psi}V'_{r'}/W^2$, отнесенных к локальному значению квадрата вектора скорости, кинетической энергии пульсационного движения $E = 0.5 \rho \left[V_{\varphi}^{12} + V_{z}^{12} + V_{r}^{12} \right] / 0.5 \rho V^{2}$, CVMмарной интенсивности пульсаций вектора скорости (без разделения на компоненты) в горизонтальном сечении пояса подводов и **HACTOTHMX** спектров. Показано влияние угла установки горелки, формы и площади выхода на аэродинамическую картину течения в объеме модели. Измерения осредненных величин проводились с помощью шарового пятиканального зонда с диаметром головки 6 мм.

Турбулентные характеристики потока измерялись с помощью термоанемометра $\mathcal{D}iSA$ с однониточными насадками. Насадки вводились в камеру вертикально и горизонтально с помощью специальных координатных устройств.

Для определения составляющих пульсаций вектора скорости и корреляций между ними применяли методику трех поворотов насадка вокруг оси. Нить насадка, установленная в данной точке, ориентировалась перпендикулярно вектору вращательной скорости, и это положение соответствовало нулевому углу поворота ($\propto = 0^{\circ}$). Два других угла ($\pm 45^{\circ}$) отсчитывали в обе стороны от нулевого. Суммарная ошибка измерений составляющих пульсаций вектора скорости не превышала 15%.

Показано, что при $\propto = 42, 62^{\circ}$ воздушные струи, выходящие из подводов, отжимаются основным потоком к наружной стенке камеры,что приводит к организации в модели преимущественно вращательного движения. Из данных, приведенных на рис. I, видно, что в этих случаях в объеме камеры выше пояса подводов вращательная скорость у наружной стенки камеры составляет 0,25-0,35 V₂.

Рис. І. Влияние угла установки горелок на распределение статического давления (а) и составляющих вектора скорости (б, в) в сечениях по высоте модели ($V_{2} = 40 \text{ м/c}$): $\bullet - \alpha = 42^{\circ}$; $x - \alpha = 62^{\circ}, \Delta - \alpha = 79^{\circ}$

Осевая скорость при этом у наружной стенки меньше вращатель ной в 3-4 раза и практически отсутствует вблизи вставки, а радиальная не превышает 2-3% от входной скорости.

Распределение статического давления согласуется с вращательной скоростью, оно уменьшается от наружной стенки модели к вставке.

При $\propto = 79^{\circ}$ картина течения качественно изменяется вследствие того, что входные струи практически прямолинейно простреливают поток и быют во внутреннюю вставку, у поверхности которой образуется зона вращательного течения. Притом в поясе подводов осевая скорость максимальна вблизи вставки и падает до нуля у наружной стенки, а в зоне выше подводов она распределяется равномерно по сечению и не превышает 5-6% от V₂.

Показано, что при изменении формы выхода (одно-, двух- и четырехсторонний) газового потока из камеры, если площади выхода равны, составляющие вектора скорости практически не изменяются в основном объеме модели. Их распределение и величина изменяются в верхних сечениях только в зависимости от площади выхода.

Коэффициент аэродинамического сопротивления модели практически не зависит от числа Рейнольдса.

Опыты показали, что в исследуемом интервале V₂ = 20-60 м/с наблюдается автомодельность аэродинамических характеристик течения относительно критерия Рейнольдса.

Сопоставление интенсивностей пульсаций \mathcal{E}_{φ} , \mathcal{E}_{z} , \mathcal{E}_{r} при разных углах установки подводов показало, что они имеют качественно одинаковый вид, но отличаются количественно. Так, при угле \ll = $\pm 42^{\circ}$ в области квазипотенциального движения (у наружной стенки)

 $\mathcal{E}_{\varphi} = 6-8\%$, $\mathcal{E}_{z} = 12-15\%$, $\mathcal{E}_{r} = 10-15\%$ и интенсивности пульсаций слабо меняются по высоте модели, а при $\alpha = 62^{\circ}$, $\mathcal{E}_{\varphi} = 15\%$, $\mathcal{E}_{z} = 30\%$, $\mathcal{E}_{r} = 25\%$ - падают практически в два раза в районе выходного сечения (рис. 2).

В области квазитвердого движения (у внутренней вставки) интенсивность возрастает до 50-70% при обоих углах установки подводов.

Кинетическая энергия турбулентности Е при $\propto = 42^{\circ}$ составляет в среднем 0,2-0,5% в основном объеме камеры выше пояса горелок, а при $\propto = 62^{\circ}$ энергия достигает 2% у наружной стенки ка-

Рис. 2. Распределение интенсивности пульсаций составляющих вектора скорости (\mathcal{E}_{φ} , \mathcal{E}_{Ξ} , \mathcal{E}_{φ}): для \mathcal{E}_{z} , $\mathcal{E}_{\varphi} - O - X -$ соответственно $\alpha = 42$; 62°; для $\mathcal{E}_{z} - \Delta - O$ - соответственно $\alpha = 42$; 62°;

меры, а затем постепенно падает и равна в среднем 0,3-0,5%, что подтверждается распределением интенсивности пульсаций вектора скорости.

Исследование суммарной интенсивности пульсаций вектора скорости \mathcal{E} в горизонтальном сечении пояса горелок показало, что при $\boldsymbol{\measuredangle}$ = 62⁰ она примерно в I,5 раза выше, чем при $\boldsymbol{\measuredangle}$ = 42⁰.

Исследование частотных спектров при 🗙 = 42, 62⁰ показало, что основная часть турбулентной энергии распределяется в области низких частот порядка 20 Гц, т.е. преобладает крупномасштабная турбулентность, что очень важно для топочной техники.

В работе показана приблизительная автомодельность турбулентных характеристик течения в модели кольцевой топки от числа Рейнольдса.

Из приведенных выше результатов видно, что при изменении угла хордальности 🖍 от 42 до 62⁰ уровень турбулентности в камере в основном объеме камеры повышается в среднем в 1,5 раза.

Результаты исследований позволяют сделать вывод, что оптималь-

ным из условий равномерного омывания экранных поверхностей и организации рабочего процесса в кольцевой топке является угол установки подводов $\alpha' = 62^{\circ}$. В этом случае максимум вращательной скорости в поясе подводов располагается в середине кольцевого зазора, а интенсивность турбулентности, определяющей и Интенсифицирующей процессы смессобразования, горения и теплообмена в топке, максимальна.

удк 532.527

К.Б.Дкакупов, В.О.Кроль

ЧИСЛЕННОЕ ИССЛЕДОВАНИЕ АЭРОДИНАМИКИ ВИХРЕВОЙ КОЛЬЦЕВОЙ КАМЕРЫ

В работе предлагается один из вариантов расчета гидродинамической картины течения в вихревой кольцевой камере на основе следующей физической модели: в камеру на некотором расстоянии от нижней торцовой стенки сквозь N_{\star} прямоугольных подводов воздуха, расположенных равномерно по периметру, вводятся струч под углом α' к касательной внешней цилиндрической поверхности. Закрученный таким образом поток вытекает через верхнее сечение камеры.

Полагая, что в области вне подводов поле скоростей и давлений является осесимметричным, течение рассчитывалось на базе полных уравнений Навье-Стокса, записанных в цилиндрических координатах при условии осевой симметрии. При этом считалось, что коэффициент турбулентной вязкости был постоянным и равным некоторому эффективному значению V, . Система уравнений приводилась к функциям тока У и вихря скорости ω И решалась метолом МИНИмальных невязок. Граничные значения на твердых стенках - общепринятые. В выходном сечении использовались "мягкие" граничные вия: $\frac{\partial^2 \omega}{\partial z^2} = \frac{\partial^2 \psi}{\partial z^2} = \frac{\partial^2 \psi}{\partial z^2} = 0$, где Z – осевая координата. VCIO-Z - осевая координата. Подвод воздуха в камеру считался равномерным по входному кольцевому сечению. Для расчета течения в области пояса подводов предполагалось, что радиальная компонента U и тангенциальная W завии 4, а осевая составляющая скорости Uсят от координат 🖊 поэпорциональна коэрдинате Z : U=GZ.В этом случае используемая система уравнений имела вид