Э. Туякбаев Н.Т. Отбор керна из скважин. Алама-Ата: Наука, 1976.

YHR 537.521.621.6

В.Т.Волов, Х.Д.Ламодапов, А.Д.Маргодин, А.В.Мищенко, В.М.Шыелев

TEOPME BUXPEBOLO THEMSELO PARPERA M HYTM CORLAHUE HA ELO OCHOBE BUXPEBOLO OO - TAREDA

Принятие обозначения: E — напряженность элентрического поля на оси резряда, B/м; W — плотность нейтральных частиц, $I/м^3$; T_e = элентронная температура, aB; Q — плотность теплового потока. Вт/ m^2 ; W_S , W, W_K — усредненная по объему, текущая и критическая плотности мощности соответственно, $B\tau/m^3$; n, K — показатели политроны и адмабаты соответственно.

В настоящее время имеется значительное количество работ, посвященных различным аспектам использования вихревых труб в различных областях науки и техники. Новым применением самовакуумирующейся вихревой трубы (СВТ), разработанной А.П.Меркуловым [I], является использование ее в качестве основы для создания нового типа электроразрядных газовых лазеров — вихревого СО₂-лазера.

Исследование тлеющего разряда в вихревой камере [2] показало возможность достижения больших удельних виладов элентической мощности, что обусловлено рекордными значениями турбулентной диффузии в вихре [3]. Данное обстоятельство побудило авторов и дальнейшему теоретическому исследованию вихревого тлеющего разряда с целью использования его для накачки CO_2 -лазера. Для расчета термодинамических параметров в сильно закрученном сжимаемом потоке в первом приближении использовалась методика, разработанная в работе [4], а диффузия электронов в вихревом тлеющем разряде рассчитывалась в приближении квазинейтральной плазим по уравнениям, полученным в работах [5,6] для осесимметричного ($\partial/\partial \phi = 0$), стационарного случая ($\partial/\partial t = 0$), а также с учетом зависимости коэффициента турбулентной диффузии от радиуса [3,5]. Данное приближение дает хорошее качественное и количественное согласие с экспериментом по интегральным характеристикам (W_S , h_e , θ , t_e , t_e t_e). Для расч

чета локальных значений термодинамических и энергетических характеристик (T , W) в случае больших удельных энерговиладов использовалось уравнение энергии с учетом изазнизобаричности процесса ($\frac{\partial \rho}{\partial Q} = 0$).

При теоретическом анализе показано, что существуют два начественно различных режима вихревсто тлепшего разрида: для физсированного расхода газа и маянх удельных вхладах мощности в разряд ($W \leftarrow W_W$), логарифыические градиенты электронных и газовых температур приблизительно равны друг другу и направлены в противоположные стороны, в случае больших удельных виладов мощности логарифыические градиенты глазовых и электронных температур направлены в одну сторону — от периферми и центру разряда ($W > W_W$) при этом расчетное значение коэффилмента политропы существенно переменно по радиусу разряда и изменяется в пределах

Выми проведены эксперименсы с целью определения удельных эксрговкладов в вихревой тлеющий разряд и снятия вольт-амперных характеристик. Опыты производились на вихревой трубе, кнершей следужние габариты: $d_{SK} = 55 \cdot 10^{-3}$ м - диаметр вихревой камеры; $F_C = 0.13$ относительная площадь соплового ввода: Z - L/d sk -относительная длина вихревой камеры. В центре внешних цек диффузора установлены кольцевые электроды с внутренним диаметром $d_{z} = 15 \cdot 10^{-3}$ м, расстояние между электродами варьировалось. Устройство работало в квавистационарном режиме: рабочий газ пов давлением (3...5)·10⁵ Па подавался через тангенциальный сопловый ввод и истемал в вихоевую камеру, где в приосевой области трубки возникала область низкого давления (P = 100...200 Торр) и температуры (150...200 К). На алектроды трубки подавалось переменное напряжение (27 кВ. 50 Гп) от высоковольтного трансформатора через регулируемое баляастное сопротивление (IO-300 Kom). В момент достижения минимального давления в приосевой области происходил пробой межэлектродного промежутка и зажигался вихревой тлеюрий разряд. Он заполнял приосевую область низкого давления, которая составляла 0.3...0,5 диаметра трубки. За каждый полупериод переменного тока разряд проходил три фазы: пробой. горение и погасание. Опыты проводились на CO₂. N₂. Не и Ar., а также на их смесях. В стадии горения вихревого тлорфего разряда Вольт-амперная характеристика носила нейтральный характер, т.е. напряжение горения разряда практически не изменялось при изменении силы тока от нули до максимального значения 🚜 . Средние плотности мощности, вложенные в разряд в вихревой камере, составляют $W_S \simeq$ 200 Вт/см³. Фотосъемка разряда с помощью фоторегистратора поназала, что разряд носил однородный характер по объему, и перегревных неустойчивостей не возникало. При использовании в качестве рабочего гвза смеси ${\rm CO_2}\colon N_2$: Не = I:II:XII была зарегистрирована генерация индуцированного излучения $W_{03}\approx {\rm I}$ Вт при длине резонатора

 $\ell=13^{\circ}10^{-2}$ м с алеминированными зеркалами с коэффициентом отражения 0.9. Сам факт генерации лазерного излучения при высокой удельной мощности, вложенной в разряд (до 200 Вт/см³), говорит о том, что разряд в трубке был тлеющим и среда не перегревалась. По известным геометрическим (F_c , \mathcal{D}_{gr} , \mathcal{A}_g , \mathcal{R}_{gup} , \mathcal{L}_g , \mathcal{A}_g) и режимным параметрам (\mathcal{P}_s^* , \mathcal{P}_h , \mathcal{CD}_2 : \mathcal{N}_2 : \mathcal{H}_e , \mathcal{J}_{cp}) с использованием данных [6] рассчитывались теоретические зависимости распределений электронных и газовых температур по радиусу вихревого тлеющего разряда и вольт-амперные характеристики. Сопоставление теоретических и экспериментальных значений вольт-амперных характеристики показало их удовлетворительное согласование.

Таким образом, проведенное исследование показало возможность использования вихревого тлекщего разряда для возбуждения рабочей среды ${\rm CO}_{2}$ -лазеров.

Библиографический список

- I. Меркулов А.П. Совместная работа вихревой трубы и диффузора // Холодильная техника. 1962. № 4.
- 2. Шмелев В.М., Марголин А.Д. К теории вихревого тлеющего разряда // МТФ. 1980. Т.50. С.745-748.
- 3. Меркулов А.П., Кудрявцев В.М., Шахов В.Г. Определение турбулентных насательных напряжений на основе замеров осредненного течения в вихревой камере //Тр. И Всесоюз.конф. "Вихревой эффект и его применение в технике". Куйбышев, 1976. С.96-112.
- 4. Волов В.Т. Метод расчета вихревого диффузорного устройства //МФЖ. 1983. № I. C.35-4I.
- 5. Волов В.Т., Ламажалов Х.Д. К теории тлеющего разряда в вихревой камере. М.:ВИНИТИ, 1986. № 3522-B87.
- 6. Волов В.Т. Теория вихревого электроразрядного ${\rm CO_2}$ -лазера. М.:ВИНИТИ. 1987. % 1645-B87.