даемых труб непосредственно для выбранного объекта.

Процесс вакуумирования является важным для многих технологических процессов (особенно в химической промышленности).

Безинерционность, малые капитальные затраты и практически неограниченный ресурс работы дает вихревым вакуум-насосам преимущества перед остальными устройствами. В качестве примера можно привести возможность установки вихревого вакуум-насоса на линии пневмозолоудаления производственной котельной. Экономический расчет системы с вихревым вакуум-насосом позволил выявить целесообразность замены парового эжектора на вихревой вакуум-насос.

Результати анализа пневмохозяйств и примеры применения вихревых устройств убедительно свидетельствуют о широких возможностях работы подобных аппаратов в местах, где требуется индивидуальный подход к каждому потребителю.

И.Л. Лейтес, Г.А. Комарова, М.А. Зидков

НЕКОТОРЫЕ ТЕРМОДИНАМИЧЕСКИЕ ЗАКОНОМЕРНОСТИ ВИХРЕВОГО ЭФФЕКТА И МЕТОДИКА ЕГО РАСЧЕТА

Экспериментальному и теоретическому исследованию вихревого эффекта (эффекта Ранка-Хилша) посвящено много работ. Однако, в настоящее время, ввиду сложности гидродинамики трехмерного вращающегося потока, задача расчета эффекта Ранка-Хилша чисто теоретическим путем не решена. Кроме того, теоретические уравнения не позволяют учесть все конструктивные особенности вихревой трубы и качество ее изготовления.

Эмпирические методы расчета вихревого эффекта, предложенные различными авторами [1], позволяют весьма точно конструировать вихревые труби. Сднако этим методам присущи все недостатки, свойственные эмпирическим уравнениям.

Наиболее перспективным представляется третий путь, который ни в коей мере не отвергает другие методики. Этот путь основан на анализе термодинамических закономерностей вихревого эффекта и на создании теоретически обоснованной методики расчета эффекта охлаждения по минимальному количеству экспериментальных данных. Такая методика является в конечном счете полуэмпирической, так как в теоретически обоснованные уравнения должны входить константы, определяемые эмпирическим путем.

К основным термодинамическим зависимостям вихревого эффекта можно отнести зависимость эффекта охлаждения от свойств реальных газов, отношения давления $\pi = -\frac{M_t}{D_c}$ (P, - давление на входе в вихревую трубу, Р2 - давление холодного потока газа на выходе из диафрагмы), температуры газа на входе в трубу Т,, поли холодного потока µ . Некоторые из этих закономерностей были вскрыты в ряде работ [1]-[7].

Целью данной работы явился анализ зависимости эффекта охлажления от отношения давлений и доли холодного потока. Для вывода аналитической зависимости $\Delta T_{x} = f(\pi)$ процесс расширения газа в вихревой трубе с Р. до Р. можно рассматривать как политропический с некоторым показателем политропы п . Величина п для ланного процесса должна находиться в области к < n < f (n = K при адиабатическом процессе; n = I - при изотермическом процесce).

Тогла эффект охлаждения газа в вихревой трубе можно рассчитать по уравнению

$$\Delta T_{x} = \frac{U_{x}^{2}}{2c_{p}} K , \qquad (1)$$

где

С. - теплоёмкость газа, дж/кг.град;

U₀ - средняя скорость истечения газа при политропическом расширении с Рт до Р2.

Величина Un может быть найдена по известному термодинамическому уравнению

где к - показатель адиабаты;

2 - коэффициент сжимаемости, учитывающий отклонение газа от идеальности;

R - газовая постоянная, дж/кг.град;

T, P, - параметры газа на входе в вихревую трубу X, н/м~;

- Лавление холодного потока газа на зыходе из диа-. uparmu, и/м-;
- И показатель политропы ностояннов теллиция, хороктеризующая данный процесс расшировых саза с Pr до P...

После подстановки уравнения (2) в уразнение (1) нолучии

a ix - (x 71 - 1 - 2 - 2 - 1 - X -

(5)

Преобразовав уравнение (3), получим

вом конструкции трубы.

$$lg\left(1-\frac{\Delta T_{ar}}{K_{1}}\right)=-\frac{n-1}{n}lg\frac{\rho_{1}}{\rho_{2}}, \qquad ($$

4)

(5)

где

$$K_{1} = \frac{K \geq R \Gamma_{1}}{(K-1) C_{p}} \quad K \quad . \quad .$$

Таким образом, если уравнение (4) справедливо, то величина $\ell_{\mathcal{G}}\left(1-\frac{\Delta T_{\mathcal{X}}}{K_{\tau}}\right)$ должна линейно зависеть от $\ell_{\mathcal{G}}$. По этому уравнению были обработаны экспериментальные данные ряда авторов [I], [5], '[6].

На рис.І, в качестве примера, приведены зависимости $4(1-\frac{4T_x}{K_c})$ от 4π , полученные при обработке экспериментальных данных А.П. Меркулова [I] и авторов [5]. Грайик представляет собой серию прямых. При каждом μ , в исследуемой области $3 \le \pi \le 10$, все экспериментальные точки, в пределах ошибка эксперимента, укладаваются на одну прямую. При экстраполяции на $4\pi = 0$ все прямые сходятся в одной точке, в которой $4\pi (1-\frac{4T_x}{K_c}) = 0$, т.е., где $4T_x = 0$. Тангенс угла наклона прямых, согласно уравнению (4), равен величине $\frac{4t-1}{R}$. Как видно из графика, чем больше μ ., тем меньше тангенс угла наклона прямых, следовательно меньше показатель политропы 4π .

В соответствии с уравнением (4) показатель политропы процесса расширения газа в трубе с Р_I до Р₂ равен

$$R = \frac{i\gamma \mathcal{H}}{ig\left(1 \frac{\Lambda T_{\mathcal{X}}}{\mathcal{K}_{*}}\right) + i\gamma \mathcal{R}} \quad (6)$$

В таблице приведены значения n, полученные при обработке экспериментальных данных ряда авторов [I], [5], [6]для значений $\mu = 0,2$; 0,4; 0,6; 0,7. Эти значения колеблются от I,06 до I,I36.

Р и с. I. Зависимость афіекта охлаждения газа в вихревой трубе от отношения дарцений: экспериментальние данние А.П. Меркулова (а); экопериментальние дапние авторов (б) .

 $\mu_{\mu} = 0_{*}2_{*}^{*} - n - \mu = 0_{*}4_{*}^{*} - n - \mu = 0_{*}6_{*}^{*} - n \quad \mu = 0_{*}7_{*}^{*} - n - \mu = 0_{*}9$ -0-

11

- 13 -

TAGANLS

вихревой трубе Значение показателя политропы процесса расширения газа в

C Y	D				-		-	aye-
HIOGTN	לד ם ט	0 - TÍ	I,145	OI'I	T,I3	Τ [±] Τ0	I'IO	(e) зн
LOI BL	CD.T HUT	L'D = 71	I,075	I,06	T,065	I,065	1	работке по уравнению
OKA3AT	2 2	9"(1 = 71"	01°I	1,07	L , 08	40°T	I sIO	
ачение п	C PI AO	4'0 = H	I,125	60 * T	I,II	I,08 ·	1	
- He He		2'0 = M	I,135	I,08	I,IO	I,087	1	Do Nqu
мений	$\chi^{1} = \frac{(x-1)c^{b}}{\sqrt{2}}$		30I 6	2. 162	291,7	307.0	251,0	найдени
вал даг	холоцного вихоле из вихоле из имащатмы,		ы	-	н	24-80	8	0 + 7 Mdu
AHTeF	λ G	на входе Р _Г		2,5-II	2- 2-	240	I 8-35	Ie n I
	AQA BX BX	Tewneparyt rasa Ha Erry vovre Borpyoy fovre H		293	593	3I O	265	начени
Υ CQ	Рабо- मुख्ये गुक्र			Bosityx	Воздух	Продувоч- ный газ синтеза аммиека	Природ- ный таз	E M C: O
Понтно	Данние			А.П. Меркулов (ЩТФ т.26, в.6, 1956) с. имо к. исс. 20. масотог- астоту 1946, м. 5 206 В.П. Алексеев ОТ/ПХП, 1954) Автори ПРОМ, 44, с.37, 1975) .				Примечан

A Tx

таким образом, измерив значения ΔT_{x} при одном значения π и μ , можно предсказать с достаточной точностью ход кривой $\Delta T_{x} = f(\pi)$ в любой области π при данном μ .

На рис.2 приведена экспериментальна_я зависимость эффекта охлаждения от отношения давлений, полученные на продувочных газах синтеза аммиака авторами [5] при $P_I = 240$ ат, $T_I = 3I0$ К и $\mu = 0.6$ (кривая I). Продувочные газы содержат (%): H_2 - от 50 до 60, N_2 - от I6 до 20, NH_3 - от 5 до I0, CH_4 - от I2 до I4, A_2 - от 4 до 8. На этом же графике найесены результаты расчета по уравнению (3). Значение n было рассчитано из эксперимента при $\pi = 5$. Как видно из графика, расчетная кривая в интервале $3 \le \pi \le 10$ описывает результаты эксперимента с ошибкой не более 2°С.

Рис. 2. Зависимость эффекта охлаждения газа в вихревой трубе от отношения давлений, ΔT_{x} , к от π :

-A - экспериментальные данные авторов; - л - * расчетные данные, л = I,07

Таким образом, показатель политропы л является обобщенным параметром, характеризующим работу вихревой трубы в целом как

холодильное устройство и позволяющий учесть отклонение газа от идеальности. Влияние доли холодного потока на эффект охлаждения газа в влхревой трубе можно оценить на основе работ [4-6]. Ранее В.М. Бродянским и И.Л. Лейтесом для расчета вихревого эффекта эхлаждения было предложено уравнение $A T_{x} = \frac{U_{x}}{2C_{D}} - \frac{U_{x}^{2} - U_{a}}{2C_{P}} \quad K,$

- где Ue средняя скорость истечения газа из сопла, м/сек;
 - U₇ средняя тангенциальная скорость потока в циафрагме, M/CEK:

(7) ·

(IO)

- Ua средняя аксиальная скорость в диафратме, м/сек:
- С. теплсёмкость газа, дж/кг.град.

Второй член в этом уравнении учитывает потери, связанные с кинетической энергией холодного потока газа.

Для практического использования данного уравнения авторы ввели ряд допущений.

Скорость истечения газа из сопла авторы рассчитывали по извест-HOMY YDALHEHMO

$$U_{c} = \sqrt{2 \frac{\kappa}{\kappa - \tau}} RT_{r} \left[1 - \left(\frac{\rho_{c}}{\rho_{r}}\right)^{\frac{\kappa + \tau}{\kappa}} \right] \qquad m / ce\kappa, \qquad (8)$$

где Р. - давление газа на выходе из сопла.

Для расчета Ur авторами было принято допущение, что радиальное распределение тангенциальной скорости подчиняется закону квазитвердого вихрл, значение Ur находили по уравнению

$$U_{T} = 0,667 U_{c} \frac{d_{y}}{D_{T}} \qquad m/cek, \qquad (9)$$

где dg - дламетр диафрагмы, им;

D_T - диаметр трубы, мм.

Значение средней аксиальной скорости Ua определяли по уравнению

$$U_{\alpha} = \frac{f^{\alpha} u f_{c} P_{\kappa o} T_{x}}{F_{g} P_{x} T_{\kappa p}} \qquad m lock,$$

где 4c, Fg- плодади сечения соответственно сопла и диафрагмы,

а - скорость звука, м/сек:

- $\rho_{\kappa p}, T_{\kappa p}$ параметры в критическом сечении сопла, н/м², К;
- Р_x, Г_x параметры газа на входе в двайрагму, н/м², К.

уравнение (7) после подстановки в него уравнений (8), (9) и (10) примет следующий вид:

$$\alpha T_{x} = \frac{\kappa_{z} R T_{r}}{(\kappa - T) \mathcal{L}_{p}} \left[1 - \left(\frac{\rho_{p}}{\rho_{q}}\right)^{\frac{\kappa - q}{\kappa}} \right] \left[1 - \left(Q_{r} 667 \frac{d\varphi}{D_{T}}\right)^{2} \right] - \alpha^{s} \left(\frac{\rho_{k\rho} T_{x}}{\rho_{x} T_{\kappa\rho} F_{q}}, \mu\right)^{2}.$$
(II)

При постояннов *л*, а также *Г*, , для данной конструкции вихревой трубы и заданной газовой смеси, уравнение (II) можно представить в упрощенном виде:

$$\Delta T_{x} = A - B \mu^{2}, \qquad (12)$$

где A и B константы, зависящие от π, Γ, (свойств газа, конструкции трубн). Следовательно эффект охлаждения зависит линейно от μ².

На рис.З представлены зависимости ΔT_x от μ^2 при разних значениях π , гостроенные по экспериментальным данным [5], [6]. Как видно из графиков, в пределах ошибки эксперимента, большая часть кривой $\Delta T_x = f(\mu^2)$ (от $\mu = 0,3$ до $\mu = 1$) описывается уравнением (12). Левый участок зависимости в области $0 < \mu < 0,3$ не описывается данным уравнением. Это объясняется тем, что при $\mu = 0$ увеличивается доля тепловых и других потерь, в частности доля " паразитного " потока [4], [7]. Отрезка, отсекаемые графиками по оси ординат, в соответствии с уравлением (12) равны численному значению константы А. Приведенные выше зависимости эффекта охлаждения газа в вихревой трубе от отношения давлений и доли колодного потока могут быть использованы при расчете вихревого эффекта. Порядок расчета может быть следующим.

Заданы два экспериментальных значения ΔT_{∞} при разных значениях μ и любых π (можно при одинаковых значениях π). По уравнению (6) определяем значение коеффициента n для калдого из μ . Затем, используя уравнение (3), находим значение эффекта охлаждения ΔT_{∞} при любых π для заданных значений μ . Зная значения ΔT_{∞} цля двух значений μ , при различных π , по уравнению (12) можно определить значения констант A и В для любых π , a следовательно, и рассчитать значения ΔT_{∞} при любых μ .

Таким образом, имея две экспериментальные точки при разных Значениях μ и любых π , можно рассчитать эффект охлаждения 3-5231

- I8 -

газа в вихревой трубе с точностью до I-2⁰C в любом интервале π и в интервале μ от 0,3 до I. Эта методика справедлива не только для идеальных газов, но й для газов, физические свойства которых далеки от идеальности.

Литература

- I. Меркулов А.П. Вихревой эффект и его применение в технике. М., "Машиностроение", 1969.
- 2. Бродннский В.И., Лейтес И.Л. О градиенте температур в трубе Ранка - Хилиа. ИФЖ, 1960, т.З, № 12, с.72.
- 3. Бродянски й В.И., ЛейтесИ.Л. Зависимость величины эффекта Ранка ст свойств реальных газов. ИФЖ, 1962, т.5, №5, с.38.
- 4. Соколов Е.Я. Характеристика вихревой труби. "Теплоэнергетика", 1966, №7.
- 5. Комарова Г.А., Лейтес И.Л. и др. Способ выделения аммиака из продувных газов синтеза. "Химическая промышлевность", 1975, №4, с.37.
- 6. Hilsch R. Die Expansion von Gasen in Zentrifugalfeld uls Kältepeozeg - "Zeitschrift für Naturforschung", 1946, N1, s. 208.
- 7. Ентов В.М., Калашников В.Н., Райских Ю.Д. О параметрах определнющих вихревой эффект. Известия АН СССР, "Механика жидкости и газа", 1967, № 3, с.32.

Ш.А. Пиралилвили

К ВОЛРОСУ ОПРЕДЕЛЕНИЯ ПРОФИЛЯ ОКРУЖНОЙ СКОРОСТИ ВЫНУЖДЕННОГО ВИХРЯ

Принятые обозначения

- У окружной момент количества
 р давление

 движения
 к
 - показатель изоэнтропч

 у скорость
 к
 - показатель изоэнтропч
- г раднус
- *р* − плотность
- 7 температура

- м число Маха
- *R* газовая посточнная
- л показатель степени закрутки вынужденного вихря
- *л* степень расширения газа