длина реакционной зоны  $L_{TP} = 60 \mathcal{D}_{TP}$ ; смещение низа диафрагмы относительно сопла  $H/\mathcal{D}_{TP} = 0,5$ .

Такой реактор с вихревой реакционной зоной диаметром  $D_{TP} = 4.8 \cdot 10^{-2}$  м испытивался при фторировании смеси оксидов РЗЭ при расходах фтора 35...40 нм<sup>3</sup>/ч. Состав смеси оксидов РЗЭ следующий:  $L_{Z_2}C_3 = 23...25; \quad C_{Z_2}C_2 = 50...55; \quad P_{26}C_{21} - 6...9; Nd_2C_3 - 13...16%, сумма оксидов остальных РЗЭ составляет I-2 %, доля примесей (сульфатов кальция, железа и окиси кремния) - I+3 %. Получены кондиционные фториды, степень превращения по сумме фторидов РЗЭ составляла 99,3 %.$ 

Вихревой реактор легко выводится на станионарный режим, прост в управлении, скономичен в использовании фтора. Полученные данные могут использоваться в практических расчетах и конструировании оборудования.

Библиографический список

I. Архи пов В.А., Ротанов Г.С. Исследование структуры гетерогенных потоков по данным рассеяния света //Тр.НИИ прикладной механики и математики.-Томск: Изд-во Томского госуниверситета, 1973. Вып. 2. С.3-8.

2. Ринкевичус Б.С. Допплеровский метод измерения локальных скоростей с помощью лазеров//Успехи физических наук, 1973. Т.З. Вып.2. С.305-330.

3. Халатов А.А., Щукин В.К., Летягин В.Г. Локальные и интегральные параметры закрученного течения в длинной трубе//ИФЖ, 1977. Т.ХХХШ. № 2. С.224-232.

4. Карелин А.И., Колмаков А.Д., Сваровский А.Я., Зурер А.Е., Соловьев А.И. Исследование процесса фторирования оксидов РЗЭ в вихревых потоках //Горение конденсированных систем. Черноголовка: Ин-т химической физики АН СССР, 1977. С.111-113.

УДК 532.517.4+536.24

А.А.Халатов, И.М.Загуменнов

ГИДРОДИНАМИКА И ТРЕНИЕ НА ТОРЦЕВОЙ ПОВЕРХНОСТИ ВИХРЕВОЙ КАМЕРЫ

Вихревые камеры широко используются в сепарационных и диспергирукщих устройствах, камерах сгорания, эжекторах, различной тепломассообменной аппаратуре. В настоящее время достаточно исследовано течение на боковой (вогнутой) поверхности. Расчет течения на торцевых поверхностях затруднен из-за отсутствия надежных данных.

Ссобенностью течения в вихревой камере является образование мощных радиальных течений на торцевых стенках, направленных к центру камеры. Эти течения вызваны нескомпенсированностью радиального градиента давления вблизи торцевых стенок камеры. Таким образом, в вихревой камере на торцевых поверхностях существуют пространственные пограничные слои. При этом возможны два режима течения: развивающийся (с протсчной зоной в ядре потска) и развитый (с нулевой радиальной скоростью в ядре). Последний режим возникает в случае, когда весь расход проходит через пограничные слои.

Целью настоящей работы является экспериментальное исследование авродинамики вихревой камеры и получение зависимостей для расчета течения на торцевых поверхностях вихревой камеры.

Исследования проводились на торцевых поверхностях цилиндрической вихревой камеры. Воздух подавался через восемь тангенциальных щелевых каналов с высотой, равной высоте камеры, и равномерно распределенных по боковой поверхности, и отводился через отверстие диаметром 25 мм в центре одной из крышек. Радиус камеры  $\mathcal{R}_{x=56,5}$  мм, высота 27 мм, суммарное сечение подводящих каналов I250 мм<sup>2</sup>.

Гидродинамика исследовалась с помощью термоанемометра ТА-15 производства Днепропетровского государственного университета. Нить датчика выполнялась из позолоченной вольфрамовой проволоки диаметром 5 мкм, длина нити около 2 мм. Датчик устанавливался в координатном устройстве, обеспечивающем перемещение по высоте пограничного слоя и поворот датчика вокруг оси. Суммарное касательное напряжение на стенке определялось методом "трубка-выступ" с помощью микротрубки диаметром I мм, выдвигаемой над поверхностью торцевой крышки на высоту 0...0,4 мм. Давление измерялось микроманометром MM-250 с тогрешностью, не превышающей 0, I Па.

Эксперименты проводились в диапазоне изменения числа Рейнольдза  $\mathcal{R}_{\mathcal{C}_{\mathcal{K}}} = V_{\mathcal{K}} \mathcal{R}_{\mathcal{K}} \mathcal{N}$ от 3·10<sup>4</sup> до 12·10<sup>4</sup> при числе Россби  $\mathcal{R}_{\mathcal{C}} = \mathcal{Q}_{\mathcal{K}} / V_{\mathcal{K}} \mathcal{R}_{\mathcal{K}}$ , равном 0,28, здесь  $V_{\mathcal{K}}$  - тангенциальная скорость на периферии камеры,  $\mathcal{Q}_{\mathcal{K}}$  - объемный расход газа.

Вектор скорости потока в пограничном слое на торцевой поверхности характеризуется радиальной  $\mathcal{V}_{r}$  и тангенциальной  $\mathcal{V}_{c}$  компонентами. При удалении от стенки величина  $\mathcal{V}_{r}$  вначале возрастает, достигая максимального значения  $\mathcal{V}_{rrm}$  в точке  $\mathcal{S}_{rm}$ , а затем убывает до значения  $\mathcal{V}_{\mathcal{PO}}$  в ядре потока. Тангенциальная скорость при удалении от стенки возрастает до значения  $\mathcal{V}_{\mathcal{PO}}$  в ядре потока (рис. I).



Рис. I. Профиль тангенциальной (I) и радиальной (2) компоненты скорости по высоте потраничного слоя ( $\mathcal{R}_{e_{x}} = 8.8 \cdot 10^{4}$ ,  $\mathcal{P} = 0.73$ )

Угол закрутки потока  $d = azctg(\mathcal{V}_{F}/\mathcal{V}_{C})$  по высоте  $\mathcal{Z}$  сначала увеличивается от значения  $d_{CT}$  до значения  $d_{CT}$  в точке  $\delta_{CT}$ , а затам уменьшается до величины  $d_{O}$  в ядре потока. При постоянном значении  $\mathcal{RE}_{K}$  в зоне развивающегося течения  $\mathcal{V}_{FOM}$ ;  $\mathcal{V}_{CO}$  и  $d_{CT}$  увеличиваются с уменьшением безразмерного радиуса  $\mathcal{F} = r/R_{K}$ . При увеличении  $\mathcal{Re}_{K}$  и постоянстве  $\mathcal{F}$  величины  $\mathcal{V}_{TO}$  и  $\mathcal{V}_{TO}$  увеличиваются, а величина  $d_{CT}$  остается примерно постоянной.

При использовании в качестве масштаба  $V_K$  безразмерная радиальная  $\mathcal{V}_{Tm}/V_K$  и тангенциальная  $\mathcal{V}_{Tm}/V_K$  скорости в точке

 $\mathcal{G}_{m}$  зависят только от безразмерного радиуса  $\mathcal{F}$  (рис.2). По высоте  $\mathcal{Z}$  окружная скорость  $\mathcal{D}_{\mathcal{C}}$  изменяется по закономерностям сдвигового течения, радиальная – по закономерностям затопленной струи.

Исследование трения на стенке показало, что суммарное касательное напряжение  $\mathcal{T}_{\mathcal{ECT}}$  увеличивается с уменьшением  $\mathcal{F}$  и увеличением  $\mathcal{R}_{\mathcal{E_X}}$  (рис.3). Радиальная  $\mathcal{T}_{reT}$  и тангенциальная  $\mathcal{T}_{\mathcal{CCT}}$ составляющие определялись с учетом среднего в пристенной части струи значения угла закрутки  $\mathcal{A}_{CO}$ . Коэффициенты трения в радиальном и тенгенциальном направлении определены по зависимостям

 $C_{fZ}/2 = \overline{T_{zcT}}/\mathcal{P} \, \overline{v_{zm}}; \, C_{fZ}/2 = \overline{T_{cT}}/\mathcal{P} \, \overline{v_{zm}} \, \overline{v_{zm}}.$ 152



Рис. 2. Изменение безразмерной радиальной (а) и тенгенциальной (б) скорости в точке максимума  $\partial_m$ ( $\mathcal{R}_{\mathcal{K}} = 6, I \cdot 10^4 \dots 12, I \cdot 10^4$ )



Рис. 3. Суммарное касательное напряжение на стенке (а) и закон трания в тангенциальном направлении (б): I –  $\mathcal{R}_{\ell_{\mathcal{K}}} = 6, I \cdot 10^4, 2 - 8, 8 \cdot 10^4, 3 - 12, I \cdot 10^4$ 

153

Козффициенты трения обобщались в форме законов трения для радиальной и тангенциальной компоненты. Полученные уравнения имею: следующий вид:  $C_{fr}/2 = 0.037 Re_{r}^{**-23}$   $C_{fr}/2 = 0.1 Re_{\phi}^{**-25}$  где  $Re_{r} = U_{rm} \delta_{r}/2$ .  $\mathcal{S}_{r} = 0.1 Re_{\phi}^{**-25}$  где  $Re_{r} = U_{rm} \delta_{\sigma}/2$ .  $\mathcal{S}_{r} = 0.1 Re_{\phi}^{**-25}$  где  $Re_{r} = 0.1 Re_{\phi}^{**-25}$  где  $Re_{\phi}^{**-25}$ 

тери импульса в радиальном и тангенциальном направлениях.

Приведенные результаты позволяют рассчитать азродинамику и поверхностное трение на торцевых поверхностях вихревой камеры в условиях развивающегося течения.

УДК 533.6.011

С.И.Остапев, Э.Н.Сабуров

ОБ ОСОБЕННОСТЯХ ВЗАИМОСВЯЗИ ТУРБУЛЕНТНЫХ И ОСРЕДНЕННЫХ ХАРАКТЕРИСТИК ПОТОКА В ВИХРЕВОЙ КАМЕРЕ

Рассмотрено приближенное решение задачи о движении газов в вихревой камере кольцевого поперечного сечения, основанное на известном представлении о потоке в расчетной зоне (ядре) как о вращающейся турбулентной струе, пограничный слой которой обращен к вставке. Компоненты турбулентных напряжений  $\rho \, \overline{\mathcal{V}_{r}} \, \overline{\mathcal{V}_{r}}''$  и  $\rho \, \overline{\mathcal{V}_{r}}'^{2}$  в

системе уравнений ососимметричного турбулентного пограничного слоя определялись в соответствии с гипотезой Прандтля о возможном обобщении теории, основанной на понятии длины пути перемешивания, на трехмерные поля осредненных и пульсационных скоростей [I]. Предложенные в работе [2] формулы для связи длины пути перемешивания  $\ell$ с радиальной координатой /~ (с точки эрения повышения достоверности расчетных соотношений для осевой и радиальной составляющих скорости, распределения давления и турбулентного трения в потоке) не имеют преимуществ перед изъестной и использованной в дальнейшем в работе зависимостью  $\ell = \alpha_e \ell^-$  ( $\alpha_e$  - козффициент, характеризурщий турбулентную структуру потока).

Решение уравнений турбулентного пограничного слоя относительно  $\mathcal{V} = \mathcal{V}_{r}/\mathcal{V}_{Tm}$ ,  $\mathcal{U} = \mathcal{V}_{z}/\mathcal{V}_{Tm}$ ,  $\rho = 2\rho_{c}/\rho\mathcal{V}_{Tm}^{2}$  при известных аппроксимациях  $\mathcal{W} = \mathcal{W}(\rho)$  ( $\mathcal{W} = \mathcal{V}_{c}/\mathcal{V}_{Tm}$ )  $\mathcal{A}_{c} = \mathcal{A}_{c}(\rho, b, n)$  позволяет найти их распределения по радиусу и длине камеры: