ПОСТРОЕНИЕ ДИСКОВОГО ВОЛНОВОГО КОНЕЧНОГО ЭЛЕМЕНТА НА БАЗЕ АНАЛИТИЧЕСКОГО РЕШЕНИЯ ДИНАМИЧЕСКОЙ ЗАДАЧИ ТЕОРИИ УПРУГОСТИ ДЛЯ ЦИЛИНДРА

Ермаков А.И.

Самарский государственный аэрокосмический университет, г. Самара

Для построения дискового волнового конечного элемента необходимо последовательности уравнений, полученные в работе [1], дополнить уравнениями, позволяющими рассчитывать колебания цилиндра при наложении на него различных кинематических ограничений. Получим эти уравнения. Представим амплитуды перемещений на боковых поверхностях цилиндра в виде следующих тригонометрических сумм [2]:

$$q_{x} = \sum_{n=0}^{\infty} q_{x}^{(n)} \cos \frac{n\pi z}{h_{0}}; q_{y} = \sum_{n=0}^{\infty} q_{y}^{(n)} \cos \frac{n\pi z}{h_{0}};$$

$$q_{z} = \sum_{n=1}^{\infty} q_{z}^{(n)} \sin \frac{n\pi z}{h_{0}}.$$
(1)

Подставляя данные разложения в приведенные в работе [1] уравнения (2) и (4), находим

$$\sum_{n=0}^{\infty} q_{x}^{(n)} \cos \frac{n\pi z}{h} = \sum_{0}^{\infty} \left\{ \frac{\partial R_{0n}^{(1)}}{\partial x} - \frac{n\pi}{h_{0}} \frac{\partial R_{1n}^{(1)}}{\partial x} + i \frac{m}{r} R_{2n}^{(1)} \right\} \cos \frac{n\pi z}{h_{0}};$$

$$\sum_{n=0}^{\infty} q_{y}^{(n)} \cos \frac{n\partial z}{h_{0}} = \sum_{n=0}^{\infty} \left\{ i \frac{m}{r} R_{0n}^{(1)} - i \frac{m}{r} \frac{n\pi}{h_{0}} R_{1n}^{(1)} - (2) \right\}$$
(2)

$$-\frac{\partial R_{2n}^{(1)}}{\partial x} \cos \frac{n\pi z}{h_0} + i \frac{m}{r} \sum_{k=0}^{\infty} \left(F_{0k}^{(1)} + \frac{\partial F_{1k}^{(1)}}{\partial z} \right) \chi_k^{(1)};$$

$$\sum_{n=1}^{\infty} q_z^{(n)} \sin \frac{n\pi z}{h_0} = \sum_{n=1}^{\infty} \left(-\frac{n\pi}{h_0} R_{0n}^{(1)} + \delta_n^2 R_{1n}^{(1)} \right) \sin \frac{n\pi z}{h_0} +$$

$$+\sum_{n=0}^{\infty} \left(\frac{\frac{\partial F_{0k}^{(1)}}{\partial z} + \frac{\partial^2 F_{1k}^{(1)}}{\partial z^2} + \frac{\lambda^2}{c_2^2} F_{1n}^{(1)}}{z_2^2} \right) \chi_k^{(1)} .$$
(3)

Замена экспоненциальных функций в выражениях $F^{(1)}_{0k}$, $F^{(1)}_{lk}$, $F^{(1)}_{2k}$, $\chi^{(1)}_{k}$ разложениями (6), приведенными в [1], позволяет исключить из (2) и (3) тригонометрические функции и получить искомые последовательности уравнений:

$$\begin{pmatrix} q_x^{(n)} \\ \end{pmatrix}_1 = \gamma_n \frac{I'_m(\mathbf{r}_1 \gamma_n)}{I_m(\mathbf{r}_2 \gamma_n)} \mathbf{A}_n^{(1)} + \gamma_n \frac{K'_m(\mathbf{r}_1 \gamma_n)}{K_m(\mathbf{r}_1 \gamma_n)} \mathbf{B}_n^{(1)} -$$

$$-\frac{n\pi}{h_0}\delta_n \frac{I'_m(r_1\delta_n)}{I_m(r_2\gamma_n)}A_{1n}^{(1)} - \frac{n\pi}{h_0}\delta_n \frac{K'_m(r_1\delta_n)}{K_m(r_1\gamma_n)}B_{1n}^{(1)} +$$

$$+ i \frac{m}{r_1} \frac{I_m(r_1\delta_n)}{I_m(r_2\gamma_n)} A_{2n}^{(1)} + \frac{m}{r_1} \frac{K_m(r_1\delta_n)}{K_m(r_1\gamma_n)} B_{2n}^{(1)};$$

$$\left(q_y^{(n)}\right)_1 = i \frac{m}{r_1} \frac{I_m(r_1\delta_n)}{I_m(r_2\gamma_n)} A_n^{(1)} + i \frac{m}{r_1} B_n^{(1)} - i \frac{m}{r_1} \frac{n\pi}{h_0} \frac{I'_m(r_1\delta_n)}{I_m(r_2\gamma_n)} A_{1n}^{(1)} - i \frac{m}{r_1} \frac{n\pi}{h_0} \frac{K'_m(r_1\delta_n)}{I_m(r_2\gamma_n)} A_{1n}^{(1)} - i \frac{m}{r_1} \frac{n\pi}{h_0} \frac{K'_m(r_1\delta_n)}{I_m(r_2\gamma_n)} A_{2n}^{(1)} - i \frac{K'_m(r_1\delta_n)}{K_m(r_1\gamma_n)} B_{2n}^{(1)} + i \frac{K'_m(r_1\delta_n)}{K_m(r_1\gamma_n)} A_{2n}^{(1)} - i \frac{K'_m(r_1\delta_n)}{K_m(r_1\gamma_n)} A_{2n}^{(1)} - i \frac{K'_m(r_1\delta_n)}{K_m(r_1\gamma_n)} A_{2n}^{(1)} + i \frac{K'_m(r_1\delta_n)}{K_m(r_1\gamma_n)} A_{2n}^{(1)} - i \frac{K'_m(r_1\delta_n)}{K_m(r_1$$

$$+i\frac{m}{r_{1}}\sum_{p=0}^{\infty}\left[t_{5p}-\frac{\omega_{p}\Omega_{p}}{\Omega_{p}^{2}+\frac{\lambda^{2}}{2c_{2}^{2}}}\left(t_{9p}t_{1p}-t_{3p}t_{10p}\right)\right]\chi_{p}^{(1)}C_{p}^{(1)}+$$

$$+i\frac{m}{r_{1}}\sum_{p=0}^{\infty}\left[t_{6p} + \frac{\omega_{p}\Omega_{p}}{\Omega_{p}^{2} + \frac{\lambda^{2}}{2c_{2}^{2}}}\left(t_{2p}t_{9p} - t_{4p}t_{10p}\right)\right]\chi_{p}^{(1)}D_{p}^{(1)};$$

74

$$\begin{split} \left(q_{z}^{(n)}\right)_{1} &= -\frac{n\pi}{h_{0}} \frac{I_{m}(r_{1}\delta_{n})}{I_{m}(r_{2}\gamma_{n})} A_{n}^{(1)} - \frac{n\pi}{h_{0}} B_{n}^{(1)} - \delta_{n}^{2} \frac{I_{m}(r_{1}\delta_{n})}{I_{m}(r_{2}\gamma_{n})} A_{1n}^{(1)} + \\ &+ \delta_{n}^{2} \frac{K_{m}(r_{1}\delta_{n})}{K_{m}(r_{1}\gamma_{n})} B_{1n}^{(1)} + \sum_{p=0}^{\infty} \left[t_{7p} - \frac{\Omega_{p}^{2} + \frac{\lambda^{2}}{c_{2}^{2}}}{\Omega_{p}^{2} + \frac{\lambda^{2}}{2c_{2}^{2}}} \right] \\ &\times \left(t_{1p} t_{11p} + t_{3p} t_{12p} \right) \right] \omega_{p} \chi_{p}^{(1)} C_{p}^{(1)} - \sum_{p=0}^{\infty} \left[t_{8p} - \frac{\Omega_{p}^{2} + \frac{\lambda^{2}}{c_{2}^{2}}}{\Omega_{p}^{2} + \frac{\lambda^{2}}{2c_{2}^{2}}} \right] \\ &\times \left(t_{2p} t_{11p} + t_{4p} t_{11p} \right) \right] \omega_{p} \chi_{p}^{(1)} D_{p}^{(1)} ; \\ \left(q_{x}^{(n)} \right)_{2} &= \gamma_{n} \frac{I'_{m}(r_{2}\gamma_{n})}{I_{m}(r_{2}\gamma_{n})} A_{n}^{(1)} + \gamma_{n} \frac{K'_{m}(r_{2}\gamma_{n})}{K_{m}(r_{1}\gamma_{n})} B_{n}^{(1)} - \\ &- \frac{n\pi}{h_{0}} \delta_{n} \frac{I'_{m}(r_{2}\delta_{n})}{I_{m}(r_{2}\gamma_{n})} A_{1n}^{(1)} - \frac{n\pi}{h_{0}} \delta_{n} \frac{K'_{m}(r_{2}\delta_{n})}{K_{m}(r_{1}\gamma_{n})} B_{1n}^{(1)} + \\ &+ i \frac{m}{r_{2}} \frac{I_{m}(r_{2}\delta_{n})}{I_{m}(r_{2}\gamma_{n})} A_{2n}^{(1)} + i \frac{m}{r_{2}} \frac{K_{m}(r_{2}\delta_{n})}{K_{m}(r_{1}\gamma_{n})} B_{n}^{(1)} - i \frac{m\pi}{r_{2}} \frac{n\pi}{h_{0}} \frac{I_{m}(r_{2}\delta_{n})}{I_{m}(r_{2}\gamma_{n})} A_{1n}^{(1)} - \\ &- \frac{i \frac{m}{r_{2}} \frac{n\pi}{h_{0}} \frac{K_{m}(r_{2}\delta_{n})}{K_{m}(r_{1}\gamma_{n})} B_{1n}^{(1)} - \delta_{n} \frac{I'_{m}(r_{2}\delta_{n})}{I_{m}(r_{2}\gamma_{n})} A_{2n}^{(1)} - \delta_{n} \frac{K'_{m}(r_{2}\delta_{n})}{K_{m}(r_{1}\gamma_{n})} B_{2n}^{(1)} - \\ &- \frac{i \frac{m}{r_{2}} \frac{n\pi}{h_{0}} \frac{K_{m}(r_{2}\delta_{n})}{K_{m}(r_{1}\gamma_{n})} B_{1n}^{(1)} - \delta_{n} \frac{I'_{m}(r_{2}\delta_{n})}{I_{m}(r_{2}\gamma_{n})} A_{2n}^{(1)} - \delta_{n} \frac{K'_{m}(r_{2}\delta_{n})}{K_{m}(r_{1}\gamma_{n})} B_{2n}^{(1)} - \\ &- \frac{i \frac{m}{r_{2}} \frac{n\pi}{h_{0}} \frac{K_{m}(r_{2}\delta_{n})}{K_{m}(r_{1}\gamma_{n})} B_{1n}^{(1)} - \delta_{n} \frac{I'_{m}(r_{2}\delta_{n})}{I_{m}(r_{2}\gamma_{n})} A_{2n}^{(1)} - \\ &- \frac{i \frac{m}{r_{2}} \frac{n\pi}{h_{0}} \frac{K_{m}(r_{2}\delta_{n})}{K_{m}(r_{1}\gamma_{n})} B_{1n}^{(1)} - \\ &- \frac{i \frac{m}{r_{2}} \frac{n\pi}{h_{0}} \frac{K_{m}(r_{2}\delta_{n})}{K_{m}(r_{1}\gamma_{n})}} B_{1n}^{(1)} - \\ &- \frac{i \frac{m}{r_{2}} \frac{n\pi}{h_{0}} \frac{K_{m}(r_{2}\delta_{n})}{K_{m}(r_{1}\gamma_{n})}} B_{1n}^{(1)} - \\ &- \frac{i \frac{m}{r_{2}} \frac{n\pi}{h_{0}} \frac{K_{m}(r_{2}\delta_{n})}{K_{m}(r_{1$$

$$+ i \frac{m}{r_{2}} \sum_{p=0}^{\infty} \left[t_{5p} - \frac{\omega_{p} \Omega_{p}}{\Omega_{p}^{2} + \frac{\lambda^{2}}{2c_{2}^{2}}} \left(t_{9p} t_{1p} - t_{3p} t_{10p} \right) \right] \chi_{p}^{(1)} C_{p}^{(1)} + + i \frac{m}{r_{2}} \sum_{p=0}^{\infty} \left[t_{6p} - \frac{\omega_{p} \Omega_{p}}{\Omega_{p}^{2} + \frac{\lambda^{2}}{2c_{2}^{2}}} \left(t_{2p} t_{9p} - t_{4p} t_{10p} \right) \right] \chi_{p}^{(1)} D_{p}^{(1)}; \left(q_{z}^{(n)} \right)_{2} = -\frac{n\pi}{h_{0}} A_{n}^{(1)} - \frac{n\pi}{h_{0}} \frac{K m (r_{2} \delta_{n})}{K m (r_{1} \delta_{n})} B_{n}^{(1)} + \delta_{n}^{2} \frac{I m (r_{2} \delta_{n})}{I m (r_{2} \gamma_{n})} A_{1n}^{(1)} +$$

$$+ \delta_{n}^{2} \frac{K_{m}(r_{2}\delta_{n})}{K_{m}(r_{1}\gamma_{n})} B_{1n}^{(1)} + \sum_{p=0}^{\infty} \left[t_{7p} - \frac{\Omega_{p}^{2} + \frac{\lambda^{2}}{c_{2}^{2}}}{\Omega_{p}^{2} + \frac{\lambda^{2}}{2c_{2}^{2}}} \times \right]$$

$$\times \left(t_{1p} t_{11p} + t_{3p} t_{12p} \right) \right] \omega_{p} \chi_{p}^{(1)} C_{p}^{(1)} - \sum_{p=0}^{\infty} \left[t_{8p} - \frac{\Omega_{p}^{2} + \frac{\lambda^{2}}{c_{2}^{2}}}{\Omega_{p}^{2} + \frac{\lambda^{2}}{2c_{2}^{2}}} \times \left(t_{2p} t_{11p} + t_{4p} t_{11p} \right) \right] \omega_{p} \chi_{p}^{(1)} D_{p}^{(1)}.$$

Запишем данные последовательности уравнений совместно с уравнениями (5), приведенными в работе [1], в виде двух следующих матричных уравнений:

$$\begin{cases} \sigma_{(N)1} \\ \sigma_{(N)2} \end{cases} = \begin{bmatrix} T_1 \end{bmatrix} \{L\}; \\ \begin{cases} q_{(N)1} \\ q_{(N)2} \\ 0 \end{bmatrix} = \begin{bmatrix} T_2 \end{bmatrix} \{L\}, \end{cases}$$
(4)

где $\{\sigma_{(N)1}\}, \{\sigma_{(N)2}\}$ – векторы амплитуд гармоник в разложении напряжений соответственно на внутренней и внешней боковых поверхностях диска;

$$\{\sigma_{(N)1}\} = \{(\sigma_{0x}^{(0)})_1, (\sigma_{0x}^{(1)})_1, ..., (\sigma_{0x}^{(N)})_1, (\tau_{0\varphi x}^{(0)})_1, (\tau_{0\varphi x}^{(0)})_1\}^T;$$

$$\{\sigma_{(N)2}\} = \{(\sigma_{0x}^{(0)})_2, (\sigma_{0x}^{(1)})_2, ... (\sigma_{0x}^{(N)})_2, (\tau_{0\varphi x}^{(0)})_2, (\tau_{0\varphi x}^{$$

 $\{q_{(N)1}\}, \{q_{(N)2}\}$ – векторы амплитуд гармоник в разложении перемещений соответственно внутренней и внешней поверхностей цилиндра;

$$\{q_{(N)1}\} = \{(q_x^{(0)})_1, (q_x^{(1)})_1, \dots, (q_x^{(N)})_1, (q_z^{(0)})_1, (q_z^{(1)})_1, \dots, (q_z^{(N)})_1, (q_z^{(N)})_1, \dots, (q_z^{($$

77

 $N-число членов, удерживаемых в разложениях; { L } – вектор неизвестных постоянных,$

$$\left\{ L \right\} = \left\{ A_{0}^{(1)}, A_{1}^{(1)}, \dots, A_{N}^{(1)}, B_{0}^{(1)}, B_{1}^{(1)}, \dots, B_{N}^{(1)}, A_{10}^{(1)}, A_{11}^{(1)}, \dots, A_{1N}^{(1)}, \right. \\ \left. B_{10}^{(1)}, B_{11}^{(1)}, \dots, B_{1N}^{(1)}, A_{20}^{(1)}, A_{21}^{(1)}, \dots, A_{2N}^{(1)}, B_{20}^{(1)}, B_{21}^{(1)}, \dots, B_{2N}^{(1)}, \right. \\ \left. C_{0}^{(1)}, \dots, \dots, \dots, N_{N}^{(1)}, D_{0}^{(1)}, D_{1}^{(1)}, \dots, D_{N}^{(1)} \right\}^{T};$$

[T₁], [T₂] – матрицы коэффициентов при неизвестных постоянных;
 {O} – нулевой вектор, содержащий 2 N компонентов,

Решая 8 N раз второе уравнение системы (4) для 8 N следующих значений вектора $\{q_{(N)1},\,q_{(N)2},O\}^{\, { \rm \scriptscriptstyle T} }$:

$$\begin{cases} q_{(N)1} \\ q_{(N)2} \\ O \end{cases} = \begin{cases} 1 \\ 0 \\ 0 \\ \cdots \\ 0 \\ O \\ 0 \\ j=1 \end{cases}; \begin{cases} 0 \\ 1 \\ 0 \\ \cdots \\ 0 \\ O \\ j=2 \end{cases}; \dots; \begin{cases} 0 \\ 0 \\ 0 \\ 0 \\ \cdots \\ 1 \\ O \\ j=2N \end{cases}$$

и подставляя затем найденные неизвестные постоянные в первое уравнение системы (4), можно вычислить все коэффициенты матрицы волновых динамических жесткостей k-го дискового конечного элемента [H^(k)]. Эта матрица устанавливает связь:

$$\begin{cases} \sigma_{(N)1}^{(k)} \\ \sigma_{(N)2}^{(k)} \end{cases} = \begin{bmatrix} H_{(N)11}^{(k)} & H_{(N)12}^{(k)} \\ H_{(N)21}^{(k)} & H_{(N)22}^{(k)} \end{bmatrix} \begin{cases} q_{(N)1}^{(k)} \\ q_{(N)2}^{(k)} \end{cases}.$$

Для удовлетворения граничных условий напряжения и перемещения на боковых поверхностях конечного элемента предлагается дополнительно раскладывать в ряды Фурье, что обеспечивает учет различия в толщинах элементов и их смещения друг относительно друга в осевом направлении [3].

Таблица 1 - Собственные частоты колебаний диска с внешним радиусом, равным 0,09 м

Частота колебаний,	Число волн деформаций				
Гц	2	3	4	5	
Расчет	3816	8278	13379	18920	
Эксперимент	3811	8220	13327	18790	
Погрешность, %	0,13	0,71	0,39	0,69	

Таблица 2 - Собственные частоты колебаний диска с внешним радиусом, равным 0,0625 м

Частота колебаний,	Число волн деформаций				
Гц	0	2	3	4	
Расчет	11279	6915	15297	24085	
Эксперимент	11168	6850	15131	23730	
Погрешность, %	0,99	0,95	1,1	1,5	

Для подтверждения корректности полученных уравнений были проведены расчетное и экспериментальное исследования собственных частот колебаний двух дисков постоянной толщины. Один из них имел внутренний и внешний радиусы соответственно 0,025 м и 0,09 м, а другой – 0,015 м и 0,0625 м. Толщины у обоих дисков составляли 0,025м. Результаты исследований представлены в табл. 1 и табл. 2.

Из приведенных в таблицах данных хорошо видно, что рассчитанные и экспериментально определенные собственные частоты хорошо согласуются.

Список литературы

- 1. Ермаков А.И. Объемная динамическая модель диска//В Сб.: Вестник СГАУ, Серия «Проблемы и перспективы развития двигателестроения», Вып. 4, ч.2, Самара, СГАУ, 2000. -с. 60 72
- Фридман Л.И. О представлении решений динамических задач теории упругости в цилиндрических координатах // Механика твердого тела - 1986, № 6.- с.71-80
- 3. Кузнецов Н.Д., Фридман Л.И., Ермаков А.И., Ухов В.Н. О построении динамических расчетов деталей двигателей на основе уравнений теории упругости // Проблемы прочности.-1989, № 3. - с.3-8