чрезмерных вибраций, нагрузок являются главным источником аварий с тяжелыми последствиями.

Список использованных источников

- Заблоцкий И.Е., Коростелев Ю.А., Шипов Р.А. Бесконтактные измерения колебаний лопаток турбомашин. М.: Машиностроение, 1977. – 160с.
- 2. А.А. Харкевич. Спектры и анализ. М.: Государственное издательство физикоматематической литературы. 1962, 236с.
- 3. Авторское свидетельство СССР № 1262295, О 01 Н 9/00. 1985.
- 4. Патент ГЛР № 276989. О 01 H-9/00, 1987.
- 5. Патент РФ № 2060475. G 01 H 9/ 00. 1996.
- 6. Патент РФ № 2063519, F 01 D 25/06, 1996.
- 7. Патент РФ № 2143103. G 01 H 11/06, 1999.
- Левин А.В., Боришанский К.Н., Консон Е.Д. Прочность и вибрация лопаток и дисков паровых турбин. Л.: Машиностроение, 1981. – 710с.
- 9. Манделыштам Л.И. Лекции по теории колебаний, М.: Наука, 1972. 470с.

УСТАНОВКА ДЛЯ ИССЛЕДОВАНИЯ КОДИРОВАНИЯ ЦВЕТА

Белозёров Д.А., Глазунов В.А., Солнцев С.В.

Лабораторная установка построена на современной элементной базе, позволяющей простыми средствами создать устройство с высокими техническими характеристиками и малыми габаритами, и предназначена для лучшего усвоения студентами основных сигналов в области телевидения. К данным сигналам относятся:

- сигналы RGB: полный синхросигнал;
- полные цветные телевизионные сигналы, кодированные в стандартах PAL и SECAM;
- полный чёрно-белый телевизионный сигнал;
- трёхуровневый импульс (SSC).

Основными блоками установки являются:

- генератор телевизионных сигналов [1];
- блок синхронизации;
- информационный стенд.

Генератор вырабатывает полный телевизионный сигнал в системах PAL и SECAM, соответствующий основным требованиям [2].

Он формирует следующие изображения:

вертикальные цветные полосы (в последовательности: белая, серая, жёлтая, голубая, зелёная, пурпурная, красная, синяя, чёрная; при

отключении цвета - градации яркости):

- сетчатое поле (16х12 клеток);
- точечное поле;
- шахматное поле;
- крест;

горизонтальные цветные полосы (в последовательности: белая. жёлтая. голубая, зелёная, пурпурная, красная, синяя, чёрная);

- красное поле;
- зелёное поле:
- синее поле:
- белое поле.

Выходные сигналы:

- видеосигнал изображений размахом 1 В на нагрузке 75 Ом;
- сигнал ПЧ звука (6,5 МГц/5,5 МГц), модулированный по частоте синусоидальным сигналом 1000 Гц;
- ВЧ-сигнал 49,75 МГц, модулированный по амплитуде видеосигналом и сигналом ПЧ звука, с уровнем на нагрузке 75 Ом 10..20 мВ:
- трёхуровневый импульс (SSC)

Прибор формирует чересстрочный растр. число строк -625, частота строк -15625 Γ ц, частота полей -50 Γ ц. Параметры синхросигнала: длительность синхроимпульса и импульсов врезок -4.7 мкс, уравнивающих импульсов -2.3 мкс, синхроимпульса полей -160 мкс. строчного гасящего импульса -12 мкс, гасящего импульса полей -1600 мкс. Структурная схема генератора телевизионных сигналов изображена на рисунке $I.\Gamma$ енератор состоит из генератора-формирователя (Γ Ф). кодера PAL (PAL), кодера SECAM (SEC), блока управления (БУ), коммутатора (K), BЧ-модулятора (BЧМ), генератора звуковой частоты (Γ 3Ч) и ЧМ-генератора (Γ 4М).

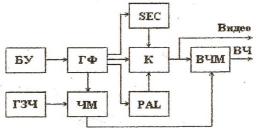


Рисунок 1. Структурная скема генератора телевизионных сигналов

Генератор-формирователь выполнен на базе программируемого микроконтроллера РІС 16С54А-20/Р фирмы MICROCHIP [3.4]. Он осуще-

ствляет формирование синхросигнала и сигналов испытательных изображений. Кроме того, с его помощью осуществляется управление режимами работы всего устройства и их индикация. Все вышеперечисленные функции реализованы программно.

При помощи блока управления осуществляется переключение различных режимов работы генератора-формирователя.

Кодер SECAM реализован на ИМС TDA8505 фирмы PHILIPS [5]. Он предназначен для кодирования RGB-сигналов в стандарте SECAM. а также формирует яркостный сигнал (Ч/Б).

Синхросигнал и сигналы RGB с генератора-формирователя одновременно поступают на кодеры PAL и SECAM. Кроме этого генератор-формирователь формирует сигнал управления коммутатором.

Кодер PAL выполнен на ИМС МС1377Р фирмы МОТОROLA [6]. При использовании в качестве кодера PAL ИМС TDA8501 или МС13077 (в соответствующих схемах включения) можно несколько упростить схему генератора и улучшить показатели кодера PAL за счет большей совместимости этих микросхем с TDA8505 и более совершенной их структуры. Он предназначен для кодирования RGB-сигналов в стандарте PAL.

Сформированные кодерами сигналы поступают на коммутатор, выполненный на микросхеме К561КТ3. Включение необходимого стандарта (РАL, SECAM и Ч/Б) производится подачей управляющих напряжений с генератора-формирователя.

Сигнал с коммутатора (видео) поступает на ВЧ-модулятор, где осуществляется амплитудная модуляция. Несущей частотой при этом является частота первого телевизионного канала, равная 49,75 МГц.

Генератор звуковой частоты выполнен на ИМС КР544УД2. Он представляет собой автогенератор с мостом Вина, вырабатывающий гармонический сигнал частотой 1000 Гц.

ЧМ-генератор поднесущей частоты звука вырабатывает переменное напряжение частотой 5,5/6,5 МГц, модулированное по частоте синусоидальным сигналом 1000 Гц. Переключение частоты осуществляется управляющим сигналом с генератора-формирователя.

Сигнал ПЧ звука с ЧМ-генератора поступает на ВЧ-модулятор, где замешивается с видеосигналом. Выходной сигнал (ВЧ) представляет собой высокочастотный телевизионный сигнал.

Блок синхронизации предназначен для получения устойчивой осциллограммы. Он вырабатывает следующие сигналы:

кадровые гасящие импульсы (КГИ):

строчные гасящие импульсы (СГИ).

Кадровые гасящие импульсы необходимы для просмотра на экране осциллографа врезок и уравнивающих импульсов, а строчные гасящие

импульсы необходимы для рассмотрения одной строки.

Информационный стенд предназначен для наглядной демонстрации прохождения сигналов по различным блокам генератора телевизионных сигналов.

Список использованных источников

- Ю. Чирков, В. Ларионов. А. Дитковский. Универсальный генератор испытательных телевизионных сигналов. Радиолюбитель. 1999. № 5. С. 3-8
- 2. ГОСТ 7845-92. Система вещательного телевидения. Основные параметры. Методика измерений.
- Однокристальные микроконтроллеры MICROCHIP: PIC16CX Пер. с англ.: Под ред. А.Н.Владимирова. – Рига: ORMIX. 1996, 120 л.
- Чирков Ю., Ларионов В. Генератор испытательных телевизионных сигналов на одной ИМС. – Радиолюбитель, 1997, №7, С.5-6.
- PHILIPS SEMICONDUCTOR. Preliminary specification, SECAM encoder TDA8505, July 1994.
- MOTOROLA SEMICONDUCTOR. Application Note of the MC 4377 color encoder (AN932).

МОДЕЛИРОВАНИЕ ПРОЦЕССОВ УТЕЧКИ ГАЗА ИЗ МОДУЛЯ КОСМИЧЕСКОГО АППАРАТА

Ананьин А. А. Занин А. Н., Сёмкин Н. Д.

При длительной эксплуатации космических аппаратов (КА), орбитальных космических станций существует вероятность сквозного пробоя элементов конструкции частицами искусственного или естественного происхождения, а также образование трещин в результате различного рода напряжений и динамических нагрузок, вследствие чего происходит разгерметизация КА. Обнаружение утечек воздуха из КА представляет значительные механические трудности в связи с тем. что космическая станция имеет большие плошади, а часть поверхности модулей космических станций покрыта электровакуумной теплоизоляцией (ЭВТИ). Таким образом, разработка аппаратуры, позволяющей быстро локализовать источники утечек воздуха из КА, является важной задачей, как для международной космической станции, так и для некоторых типов КА, что требует создания расчетных моделей объекта исследования (источника утечки газа из модуля КА) [1, 5].

При обнаружении утечки воздуха из модуля КА практический интерес представляют: ноток газа через отверстие в плоской бесконечно тонкой и неограниченной по размерам пластине. в длинных и коротких