СИСТЕМА СБОРА АНАЛОГОВОЙ ИНФОРМАЦИИ ДЛЯ ПЭВМ НА ОСНОВЕ ШИНЫ РСІ

Кондоров Д.А.

При исследовании сигналов с датчиков часто приходится иметь дело со случайными сигналами. Это затрудняет использование осциллографических методов. Поскольку сигналы на выходе датчика часто обусловлены случайными событиями (например, в датчике встроенного контроля выходной сигнал несёт информацию только в момент пролёта частицы, и частота импульсов зависит от количества частиц), в таких случаях системы на базе ЭВМ, непрерывно получающие информацию с датчика, также оказываются неэффективны. Вводимые выборки при отсутствии частиц информации не несут, но занимают место в памяти, это не позволяет исследовать сигналы на достаточно протяжённых промежутках времени.

Наиболее эффективной альтернативой системам с непрерывным сбором информации представляются системы, где выборки вводятся только при наличии сигнала на входе, а длительность «перерыва» измеряется и записывается как число. Это позволит сэкономить много памяти, особенно если сигналы редки. С другой стороны, отказ от непрерывного ввода выборок приводит к тому, что инициатором ввода должно быть периферийное устройство, а значит должен использоваться механизм прерываний. В настоящее время прерывания используются в большинстве интерфейсов периферии. Но в любом случае для управления системой ввода придётся использовать либо достаточно сложный блок логики, либо микроконтроллер.

В настоящее время широко применяются программируемые логические матрицы (ПЛМ) нового поколения, позволяющие реализовать на кристалле микропроцессорную систему или набор сложной логики. Это ПЛМ фирм Xilinx, Altera и др. Для ПЛМ Altera существует и бесплатно распространяется подпрограмма контроллера шины РСІ. Это позволяет реализовать на кристалле Altera систему сбора информации в виде платы расширения ПК. Преимущества такого решения: система подключается по шине РСІ, являющейся высокоскоростной «интеллектуальной» шиной, что позволяет оптимизировать работу всей системы; устройство работает в любой операционной системе, на любой платформе, поддерживающей РСІ (РС, РоwerMac и др.); нет необходимости в отдельном блоке питания корпусе.

Сигнал с датчика поступает на дифференциальный усилитель, а с него на АЦП малой разрядности (например, 8) и временем преобразования ~100 нс. На инвертирующий вход усилителя поступает сигнал с выхода 16-ти разрядного ЦАП, и соответствующий по величине сигналу в предшествующем такте. То есть АЦП в каждом такте находит величину

прирашения сигнала. Чтобы повысить точность преобразования, для АШП и ЦАП используется одно и то же опорное напряжение. С выхода АШП кол поступает на вход сумматора, где складывается со значением кода. полученным в предыдущем такте. Сумматор 16-ти разрядный и выхолной код – 16-ти разрядный. Код с выхода АЦП поступает на младшие разрялы сумматора и корректирует результат в каждый момент времени. Чтобы поправка соответствовала младшим разрядам, необходимо усилить сигнал рассогласования, а поскольку разрядность АЦП – 8, а ЦАП – 16, коэффициент усиления должен быть 256 (28). Тем самым реализуется следящая схема, и результат аналогово-цифрового преобразования постоянно корректируется. Запрос на прерывание для ввода отсчётов формируется только в случае превышения входным сигналом установленного уровня. Основным недостатком такой системы следует признать ограничение по скорости нарастания входного сигнала - не более (U оп / 51.2) В/мкс при частоте выборок 10 МГц и 8-ми разрядном АЦП. При $U_{on} = 5.12$ В граничная частота системы составит 100 кГц по уровню 1 В. Повысить граничную частоту можно, увеличив разрядность АЦП. Применяя 10 или 12 разрядные АЦП можно повысить граничную частоту в 4 или 16 раз.

На ПЛМ реализуется схема управления системой. Предполагается обрабатывать выборки с частотой 100 кГц. Возможно сохранение в локальной памяти как выборок (после интегратора), так и величины приращения сигнала. В зависимости от алгоритма дальнейшей обработки сигнала возможна коррекция схемы управления без изменения печатной платы.

Работа системы в составе ПЭВМ организуется, как и работа любой другой платы расширения на шине РСІ. При выполнении программы РОЅТ плата сообщает системе диапазон используемых адресов, номер прерывания и канала прямого доступа к памяти. После запуска программы обработки сигнала система переходит в активное состояние, и в ОЗУ вводятся приращения сигнала. При выполнении условия присутствия сигнала на входе, система выдаёт прерывание, после чего в зависимости от алгоритма программы в ОЗУ ПЭВМ вводятся либо всё содержимое ОЗУ (выборки или приращения), либо только некоторые выборки (через 1 или 10 мкс). Это позволит оптимизировать работу системы в зависимости от конкретной задачи, не меняя конструкции платы.

Система может применяться для изучения различных сигналов, в т. ч. случайных, где напряжение изменяется достаточно плавно, либо не требуются скорости преобразования более 100000 выборок в секунду. Увеличить быстродействие можно, либо увеличив разрядность АЦП, либо повысив тактовую частоту (частоту преобразования АЦП). Изменения схемы при этом минимальны и сводятся лишь к изменению количества линий данных (с АЦП) и возможно, сигналов управления.

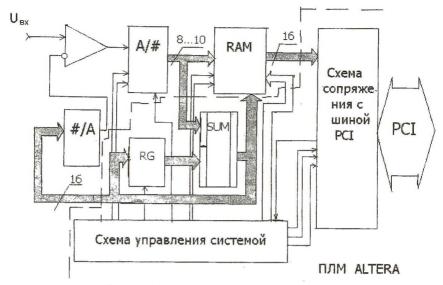


Рисунок 1 Структурная схема системы сбора данных

УЛК 621.327.67

ПОВЫШЕНИЕ ТОЧНОСТИ КОНТРОЛЯ ГРАНУЛОМЕТРИЧЕСКОГО СОСТАВА ДИСПЕРСНОЙ ФАЗЫ СМАЗЫВАЮЩЕЙ ОХЛАЖДАЮЩЕЙ ЖИДКОСТИ

Шипилов А.А.

Контроль технического состояния жидкостных систем по параметрам частиц износа предполагает определение концентрации и гранулометрического состава частиц механических примесей. Для этого широко применяются фотоэлектрические анализаторы параметров дисперсной фазы.

В этих анализаторах световой поток взаимодействует с частицами, находящимися в жидкости и создает неоднородность освещенности в апертуре фотоприемника, на выходе которого образуются электрические импульсы, несущие информацию о концентрации частиц примеси (количество импульсов) и их размере (амплитуда импульсов).

При обработке выходного сигнала датчика осуществляется подсчет импульсов и определяется их амплитуда. С датчика через блок компараторов, где производится амплитудное селектирование, сигналы поступают на процессорный модуль для дальнейшей обработки.

В настоящее время микроконтроллеры могут обрабатывать каждый импульс в отдельности, но при большом числе размерных интервалов (5...6) возможно возникновение ошибки (пропуск импульса) из-за того,