ниженной коррознонной стойкостью. Развитие интенсивной койрозни во влажной среде наблюдалось уже через 100 часов. С другой стороны, для условий свободной усадки наличие преимущественно сжимающих напряжений обусловило высокую коррозионную стойкость таких соединений. При выдержке во влажной среле в течение 4000 часов коррозии не наблюдалось.

выводы

I. Установлена возможность рентгенографического изучения остаточных напряжений кольцевых сварных соединений из стали ХІ8Н10Т методом одной наклонной съемки. Полученные данные хорошо согласуются с расчетными и результатами коррознонных испытаний.

2. Установлено, что вследствие воздействия термического цикла сварки наблюдается непостоянство параметров кристаллической решетки аустенита в различных зонах сварного шва, которое необходимо учитывать при рентгенографическом определения остаточных напряжений.

ЛИТЕРАТУРА

1. Медовар Б. И. Сварка жаропрочных аустенитных сталей и сплавов. М., «Маниностроение», 1966.

2. Винокуров В. А. Сварочные деформации и напряжения. М., «Машиностроение», 1968. 3. Гиньс А. Рентгенография кристаллов. М, Физматгиз, 1961.

4. Ратпер А. В., Березина Т. Г. Остаточные напряжения в сварных стыках аустенитных паропроводов. «Теплоэнергетика», № 7, 1964.

5. Уманский Я. С. Рентгенография металлов и полупроводников. М. «Металлургия», 1970.

А. Н. Рогинко, М. И. Разумихин

ВЕРОЯТНОСТНЫЕ ХАРАКТЕРИСТИКИ СМЕЩЕНИЙ ЛЕТАЛЕЙ В ПОЛЕ ЗАЗОРОВ ПРИ УВЯЗКЕ ОСНАСТКИ по базовым отверстиям

При расчете точности процесса увязки оснастки по базовым отверстням на основе технологического натурного стенда * необходимо суммировать линейные и векторные погрешности с проекциями зазоров в сопряжениях по базовым отверстиям (БО) на заданные направления. В процессе изготовления оснастки в последовательности: базовый шаблон технологического натурного стенда (ТНС) — эталон —приспособление -- деталь и кронштейн ТНС — вилка монтажного эталона — переходная втулка — фиксатор стапеля происходит накопление смещений элементов оснастки

* Авторское свидетельство № 264920.

в поле векторных зазоров, приводящее к заметному увеличению результирующей погрешности — обвода крыла.

Поскольку БО задаются в стенках элементов сплового набора крыла, а все работы по изготовлению оснастки в ТНС проводятся в положении, когда оси БО горизонтальны, то выборка заюров в сопряжениях по БО происходит под действием веса конструкции.

Пусть ОМ — вертикальная ось координат, а ОN — горизонтальная, принадлежащая илоскости степки первюры (лонжерона), т. е. перпендикулярная оси БО. Поставим задачу определения характеристик проекций зазоров на оси ОМ и ОN.

Выборка зазоров происходит главным образом в направлении оси ОМ. Но суммирование полного значения зазора с погреш-

постями вдоль оси ОМ не будет достапино точным. Каждый элемент оснастки (шаблон, эталон, деталь и т. п.) фиксируется по меньшей мерс на два БО, причем в каждом случае имеется какая-то погрешпость межцентрового расстояния между двумя БО. Это приведет к тому, что болт в каждом из БО будет смещаться в отверстии не строго вертикально, так как оси двух БО в сопрягаемых деталях в случае не совпадут и, следоваобщем тельно, выборка зазоров в вертикальном направлении будет неполной (рис. 1). В таком случае задача определения характеристик смещения деталей в поле зазоров сводится к установлению связи между характеристиками проекций зазоров па оси ОМ и ОN и характеристиками зазоров, полностью выбирающихся в фиксированном направлении, значения KOTOрых хорошо известны.

Пусть имеются отверстие и вал с номпиально равными диаметрами, принимающими случайные значения с определенными характеристиками распределепия. Вследствие погрешностей межцен-

 \mathbb{B}^{h}

трового расстояния центр вала займет под действием веса любое положение на вижией полуокружности раднуса r, равного значению раднального зазора (рис. 1). Проекция вектора r на ось ОМ $r_m = r \cdot \cos \varphi$. (1)

Величины *r* и сояф — случайные и независимые. Тогда математическое ожидание и дисперсия величним *r_m*, согласно известным положениям теории вероятностей [1],

$$Mr_{m} = Mr \cdot M\cos\varphi; \qquad (2)$$

115

 $Dr_m = Dr \cdot D\cos\varphi + Dr (\dot{M}\cos\varphi)^2 + D\cos\varphi(\dot{M}r)^2$. (3) Значения угла φ могут находиться в пределах от $-\frac{\pi}{2}$ до $\frac{\pi}{2}$. Направление вектора \bar{r} зависит от погрешностей разме ров L₁ и L₂, диаметров отверстий d'_{a_1} , d'_{a_2} , d''_{a_1} , d''_{a_2} , диаметров болтов $d'_{\rm B}$, $d''_{\rm B}$ (рис. 2), т. е. по меньшей мере от восьми случай ных величин, не считая влияния погрешностей формы отверстий

Рис. 2. Погрешности, влияющие на направление вектора

и валов, температурных и упругих деформаций и т. п. При этих условиях, учитывая также симметрию, можно принять нормаль ный закон распределения вектора по углу φ в интервале от — $\frac{\pi}{2}$ до $\frac{\pi}{2}$. Из условия задачи очевидно, что М φ =0. Величины M соѕ φ н D соѕ φ определяются [1] выражениями:

$$M\cos\varphi = \frac{1}{\sigma \sqrt{2\pi}} \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \cos\varphi \cdot e^{-\frac{\varphi^{3}}{2\sigma^{2}}} d\varphi; \qquad (4)$$
$$D\cos\varphi = \frac{1}{\sigma \sqrt{2\pi}} \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} (\cos\varphi - M\cos\varphi)^{2} e^{-\frac{\varphi^{2}}{2\sigma^{2}}} d\varphi. \qquad (5)$$

Интегралы (4) и (5) можно вычислить методом разложения искомой функции в ряд Тэйлора [2] с сохранением в правой ча сти разложения достаточно большого числа членов, так как функ ция соsф не близка к линейной, т. е.

$$M\cos\varphi = \cos(M\,\varphi) + \sum_{k=2}^{\infty} \frac{\mu_k(\varphi)}{k!} \left[\frac{d^k(\cos\varphi)}{d\,\varphi^k} \right]_{\varphi=M=\varphi=0} \left]. \tag{6}$$

Здесь μ_h (ϕ) — центральный момент к-го порядка случайной шеличны ϕ , а $\frac{d^{\kappa} (\cos \phi)}{d \phi^{\kappa}}$ — производная к-го порядка от соз ϕ по ϕ . Центральные моменты величины ϕ , распределенной по нормальному закону [1].

$$\mu^{(2n)}(\varphi) = 1 \cdot 3 \cdot \dots \cdot (2n-1) \sigma^{2n}.$$

$$\mu^{(2n-1)}(\varphi) = 0; \qquad n = 1, 2, 3, \dots,$$

но есть для нечетных k

$$\mu_1 = \mu_3 = \mu_5 = \dots = 0,$$

п для четных k $u_0 = \sigma^2$:

 $\mu_2 = \sigma^2;$ $\mu_4 = 3\sigma^4;$ $\mu_6 = 15\sigma^6;$ $\mu_8 = 105\sigma^8.$

С вероятностью 0,9973 можно принять $\sigma = \frac{\pi}{6}$.

После дифференцирования и подсчетов по формуле (6) получим

$$M \cos \varphi = 0.872.$$
 (7)

Дисперсию собф определим по известной формуле теории вероятностей

$$D\cos\varphi = M(\cos^2\varphi) - (M\cos\varphi)^2,$$

где М (соѕ² ф) определяется по формуле, аналогичной (6). После подсчетов получим

$$M \cos^2 \varphi = 0,789;$$

$$D \cos \varphi = 0,789 - (0,872)^2 = 0,029.$$

Уравнения (2) и (3) запишутся в виде

$$Mr_m = 0.872Mr; \tag{8}$$

$$Dr_m = 0.789Dr + 0.029(Mr)^2.$$
(9)

Наибольшее расстояние между осями отверстия и вала

$$\rho = \Delta_z + \delta_z,$$

где Δ_z — координата середины, а δ_z — половина поля рассеяния радиального зазора.

Математическое ожидание модуля вектора

$$Mr = Mz = \Delta_z + \alpha_z \,\delta_z,\tag{10}$$

а дисперсия

$$Dr = Dz = D(\Delta_z + \delta_z) = D\delta_z = \frac{1}{9} k_z^2 \delta_z^2, \qquad (11)$$

гак как дисперсия постоянной величины Δ_2 равна нулю.

Из (8) и (10) получим

$$Mr_m = 0,872(\Delta_z + \alpha_z \,\delta_z),\tag{12}$$

Необходимо определить характеристики проекций зазоров на оси ОМ (Δ_{2m} , δ_{2m} , k_{2m} , a_{2m}) и ОN (Δ_{2n} , δ_{2n} , k_{2n} , a_{2n}) через известцые характеристики сопряжения при полной выборке зазоров в фиксированном направлении (Δ_z , δ_z , a_z). Очевидно, максимальное расстояние между проекциями осей отверстия и вала на ось ОМ равно ($\Delta_z + \delta_z$). При этом оси нахо дятся в одной вертикальной члоскости ($\varphi = 0$). Минимальное рас стояние между проекциями осей равно нулю ($\varphi = \pm -\frac{\pi}{2}$). Сле довательно, полное поле допуска проекции зазора

$$2\delta_{zm} = (\Delta_z + \delta_z) - 0,$$

и, очевидно,

$$\Delta_{zm} = \delta_{zm} = \frac{\Delta_z + \tilde{\tau}_z}{2}.$$
 (13)

Коэффициент относительной асимметрии a_{2m} [3] определяется из соотношения

$$\alpha_{zm} = \frac{Mr_m - \Lambda_{zm}}{\delta_{zm}} = \frac{Mr_m - \delta_{zm}}{\delta_{zm}} = \frac{Mr_m}{\delta_{zm}} = 1.$$

Сучетом (12) п (13) получим

$$\alpha_{z:u} = \frac{1.74 \left(\Lambda_z + \frac{1}{2} \lambda_z \right)}{\Delta_z + \hat{n}_z} = 1.$$
(14)

Коэффиниент относительного рассеяния к_{ат} определяется ин равенства

$$\frac{1}{9} k_{zm}^2 \cdot i_{zm}^2 = Dr_m.$$

Используя (9) и (13), можно голучить

$$k_{zm}^{2} = \frac{3.16 \left[k_{m}^{2} + 0.33 \left(\frac{\Lambda_{z}}{\delta_{z}} + x_{z} \right)^{2} \right]}{\left(1 + \frac{\Lambda_{z}}{n_{z}} \right)^{2}} \,.$$
(15)

Аналогично определяются характеристики проекции вектора на ось ON:

$$r_{n} = r \cdot \sin \alpha;$$

$$Mr_{n} = Mr \cdot M \sin \alpha;$$
 (16)

$$Dr_n = Dr \cdot D\sin\varphi + Dr \cdot (M\sin\varphi)^2 + D\sin\varphi \cdot (Mr)^2.$$
(17)

Подсчет числовых характеристик M sin φ и D sin φ разложени ем в ряд дает M sin $\varphi=0$; D sin $\varphi=0,21$.

Поскольку распределение симметрично отвосительно оси ОМ, то

$$Mr_n = \Delta_{zn} = 0; \quad \alpha_{z_1} = 0; \quad \delta_{z_n} = \Delta_z + \delta_z. \tag{18}$$

$$\Gamma r_n = 0.21 Dr + 0.21 (A;r)^2, \frac{1}{9} k_{zn}^2 \lambda_{zn}^2, \tag{19}$$

еткуда с использованием (10) и (11) получим

$$k_{zn}^{2} = \frac{0.21 \left| k_{z}^{0} + 9 \left(\frac{\Lambda_{z}}{\Lambda_{z}} + 2 \right)^{2} \right|}{\left(1 + \frac{\Lambda_{z}}{\delta_{z}} \right)^{2}} , \qquad (20)$$

118

В тех случаях, когда можно принять нормальный закон распределения для отверстия и вала ($k_a = k_b = 1$, ($a_a = a_b = 0$), $k_z = 1$, $a_z = 0$, полученные выражения соответственно упрощаются.

В формулы (14), (15) и (20) входят величины, зависящие от выбора днаметров, класса точности и вида посадок. Для оценки влияния этих факторов воспользуемся представлением допусков к виде произведсния единицы допуска *i* на коэффициент точности *a*: $\delta' = a \cdot i$. [4].

Так как отверстие и вал могут выполияться с разным числом елиниц допуска, то выразим число единиц допуска вала через число единиц допуска отверстия

$$a_b = a_a \cdot t$$
.

Поля допусков отверстия и вала соответственно равны $a_{\mathbf{a}} \cdot i$ н $a_{\mathbf{a}} \cdot i$,

поэтому в системе отверстия

$$\Delta_a = \delta_a = \frac{a_a \cdot i}{2}; \quad \delta_b = \frac{a_b \cdot i}{2} = \frac{a_a \cdot i \cdot t}{2}. \tag{21}$$

Значения A_в для валов, выполненных с различными посадками, можно определить из апализа полей допусков стандартных восадок [5] и их расположения относительно номинала N_в. Очевидно,

Из таблиц допусков стандартных посадок легко видеть, что величина $\frac{N_B - BO}{ai}$ для днапазона днаметров свыше 6 до 80 мм, соответствующего применяемым днаметрам БО, составляет

1 — для посадки Х;

 $\frac{1}{2}$ — для посадок Д и X₃.

равна нулю для скользящих посадок всех классов точности.

Таким образом, величина Δ_{μ} для скользящих посадок — $\frac{a_{\rm B}i}{2} = -\frac{a_{\rm a}it}{2};$ для посадок Д и X₃ — $a_{\rm s}i = -a_{\rm a}it;$ вля посадки X — $\frac{3}{2}a_{\rm b}i = -\frac{3}{2}a_{\rm a}it.$

Имея в виду, что значения a_a, *і* и *t* известны, можно записать

$$\delta_z = 0,25ai\sqrt{1+t^2};$$

 $\Delta_z = 0,25ai(1+nt),$

иче n=1 для посадок скольжения, n=2 для посадок X₃ п /1, n=3 для посадки X. Теперь формулы (14), (15) п (20) примут вид

$$\alpha_{zm} = \frac{1,74(1+nt)}{1+nt+1,1+t^2} - 1;$$
(22)

$$k^{2}_{sm} = 3,16 \frac{1+0.33 \frac{(1+mt)^{2}}{1+t^{2}}}{\left(1+\frac{1+mt}{\sqrt{1+t^{2}}}\right)^{2}};$$
(23)

$$k_{zm}^{2} = 0.21 \frac{1 + 9 \frac{(1 + nt)^{2}}{1 + t^{2}}}{\left(1 + \frac{1 + nt}{\sqrt{1 + t^{2}}}\right)^{2}}.$$
(24)

Из (22), (23) и (24) следует, что коэффициенты ази, kzm и km ис зависят от конкретных значений диаметров валов и отверстий.

				Таблица		
Посадка	п	$t = \frac{u_{\rm R}}{a_{\rm a}}$	α _{ZIN}	k _{zm}	k _{zn}	
А/Д	2	0,62	0.15	0,90	0,92	
Λ/C	1	0.62	0,02	0,95	0,82	
Λ/X	3	0,91	0.28	0,88	1.02	
Λ_{2n}/C_{2a}	1	0,64	0,02	0,93	0.82	
Λ/C_3	l	1,88	0	0,95	0,82	
Λ_3/C_3	1	1.0	0,02	0,95	0,83	
Λ_3/X_3	2	1,23	0.17	0.89	0,95	
Λ_4/C_4	ł	1,0	0.02	0.95	0,83	
A_5/C_5	I	1,0	0,02	0,95	0,83	

Эт	0 11031	воляет	зара	нее
вычис	лить зі	ачени	я этих	$\mathrm{KO}_{\mathbb{C}}$
эффиг	циентов	для	нанбо	лес
употре	ебитель	ыных	станда	рт-
ных п	осадок	(CM.	табл.).	

Полученные значения ко эффициентов относительной асимметрии и относительно-EO. рассеяния применимы для расчетов смещений в позазоров на всех ле этапах процесса увязки оснастки по базовым отверстиям, за даваемым в стенках деталей и узлов силового набора крыла.

ЛИТЕРАТУРА

1. Гнеденко Б. В. Курс теории вероятностей. М., «Наука», 1965.

2. Вентне Б. С. Теория вероятностей. М., «Наука», 1969. 3. Бородачев И. А. Анализ качества и точности производства. М., Машгиз, 1964.

4. Анарин Г. А., Городецкий И. Е. Допуски и технические изму-

5. Машиностроение. Энциклопедический справочник. Т. 5, М., Машгил, 1947.

А. Н. Рогинко, М. И. Разумихии

РАСЧЕТ ДОЛУСКОВ НА ИЗГОТОВЛЕНИЕ ОСНАСТКИ И ДЕТАЛЕЙ ПО ЗАДАННОМУ ДОПУСКУ НА ОБВОДЫ крыла

При увязке оснастки для изготовления агрегатов, образован ных линейчатыми поверхностями, на основе технологического на 120