КУЙБЫШЕВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ труды, выпуск хх. часть 11, 1965 г. Вопросы технологии производства летательных аппаратов

М. И. РАЗУМИХИН, Р. М. БЕЛЯШЕВ, Ю. И. БОЛОТИН

ТЕОРЕТИЧЕСКОЕ ОПРЕДЕЛЕНИЕ ПРЕДЕЛЬНЫХ КОЭФФИЦИЕНТОВ ВЫТЯЖКИ ПРИ ШТАМПОВКЕ ЦИЛИНДРИЧЕСКИХ ДЕТАЛЕЙ С УЧЕТОМ УПРОЧНЕНИЯ МАТЕРИАЛА

Схема решения такого типа задач дана в работе [1] путем интегрирования дифференциальных уравнений движения Навье-Стокса, наиболее общая форма которых приведена в работе [2].

Исследование проводим в цилиндрической системе координат: r, Θ ,z,r (фиг. 1) при следующих допущениях:

 принимаем, что силы трепия между заготовкой и матрицей, а также заготовкой и прижимом отсутствуют;

 силами веса и инерции заготовки пренебрегаем;

 в процессе вытяжки изменения толщины фланца не происходит;

 принимаем следующее поле скоростей:

 $V_r = V_r(r);$

$$V_{\Theta} = 0; \tag{1}$$
$$V_{z} = 0,$$

где V, — радиальная составляющая скорости течения частии металла:

V₀ — тангенциальная составляющая скорости;

V_z — осевая составляющая. С учетом (1) уравнение неразрывности примет вид:

$$\frac{\partial}{\partial r} \left(V_r \cdot r \right) = 0, \tag{2}$$

Решая его при граничных условиях

$$r = r_0$$
 и $V_z = -V_0$, (3)

получаем скорость течения частиц металла

$$V_r = -\frac{V_0 r_0}{r}.$$
(4)

С учетом (1) и (4) выражение для скоростей деформации частиц металла запишутся:

$$\varepsilon_{rr} = \frac{V_0 r_0}{r^2}; \qquad \varepsilon_{r\Theta} = 0;$$

$$\epsilon_{\Theta\Theta} = -\frac{V_0 r_0}{r^2} \quad \epsilon_{\Theta z} = 0; \qquad (5)$$

$$\varepsilon_{zz} = 0;$$
 $\varepsilon_{zr} = 0,$

а интенсивность скоростей деформации в следующем виде:

$$\varepsilon_i = \frac{2}{\sqrt{3}} \cdot \frac{V_0 r_0}{r^2}.$$
 (6)

Интегрируем уравнение связи деформаций с соответствующими скоростями деформаций при граничных условиях

$$r = R; \quad e_{rr} = 0; \quad e_{\Theta\Theta} = 0, \tag{7}$$

где R — наружный радиус фланца заготовки. С учетом (1), (4) и (5) получим выражение для радиальной, осевой и окружной деформаций

$$e_{rr} = \ln \frac{R}{r}; \quad e_{\Theta\Theta} = -\ln \frac{R}{r}; \quad e_{zz} = 0.$$
(8)

фиг. 2.

236

Тогда с учетом (8) интенсивность деформаций примет вид:

$$e_i = \frac{2}{1-3} \ln \frac{R}{r}.$$
(9)

Примем линейную аппорксимацию диаграммы растяжения образца

$$\sigma_i = \sigma_s + \Pi e_i, \tag{10}$$

Здесь о, - условный предел текучести;

П — модуль упрочнения материала.

С учетом (9) выражение (10) запишется:

$$\sigma_i = \sigma_s + \frac{2}{\sqrt{3}} \Pi \ln \frac{R}{r}.$$
 (11)

При этом, принимая во внимание (6) и (11), коэффициент жесткости материала фланца заготовки можно записать известным соотношением:

$$\mu_i = \frac{\frac{\sigma_s r^2}{2 \sqrt{3} V_0 r_0}}{\frac{1}{2 \sqrt{3} V_0 r_0}} + \frac{\Pi}{3} \frac{\ln \frac{R}{r} r^2}{V_0 r_0} \,. \tag{12}$$

На фиг. З представлено изменение коэффициента жесткости от текущего радиуса *r* точки.

Учитывая, что радиальная скорость V, и коэффициент жесткости µ_i зависят только от координаты r, запишем уравнение движения Навье-Стокса в цилиндрической системе координат

$$\begin{aligned} &-\frac{\partial^{3}}{\partial r} = \frac{2\mu_{i}}{r} \cdot \frac{\partial V_{r}}{\partial r} + 2 \frac{\partial \mu_{i}}{\partial r} \times \\ &\times \frac{\partial V_{r}}{\partial r} + 2\mu_{i} \frac{\partial^{2} V_{r}}{\partial r^{2}} - 2\mu_{i} \frac{V_{r}}{V^{2}}; \end{aligned}$$

$$-\frac{\partial \sigma}{\partial \partial} = 0; \quad \frac{\partial \sigma}{\partial z} = 0.$$
 (13)

Подставив в (13) значение входящих величин (4) и (12), получим:

$$-\frac{\partial z}{\partial r} = \frac{2z_s}{\sqrt{3}} + \frac{4}{3}\Pi \frac{\ln \frac{R}{r}}{r} - \frac{2}{3}\Pi.$$
(14)

237

Общее решение этого уравнения записывается в виде:

 $\sigma = \frac{2\sigma_s}{\sqrt{3}} \ln r - \frac{4}{3} \Pi \ln R \ln r + \frac{2}{3} \Pi \ln^2 r + \frac{2}{3} \Pi \ln r + C.$ (15)

При известном значении величины среднего напряжения поле напряжений записывается в форме:

$$\sigma_{rr} = \sigma + 2\mu_i \epsilon_{rr};$$

$$\sigma_{\theta\theta} = \sigma + 2\mu_i \epsilon_{\theta\theta};$$

$$\sigma_{zz} = \sigma + 2\mu_i \epsilon_{zz}.$$
(16)

Постоянную интегрирования С в уравнении (15) найдем из первого уравнения системы (16), полагая равными нулю радиальные напряжения на наружном крае фланца.

$$C = \frac{2\sigma_s}{\sqrt{3}} \ln R + \frac{4}{3} \Pi \ln^2 R - \frac{2}{3} \Pi \ln^2 R - \frac{2}{3} \Pi \ln^2 R - \frac{2}{3} \Pi \ln R - \frac{\sigma_s}{\sqrt{3}}.$$
 (17)

Таким образом, выражение для среднего напряжения примет вид:

$$\sigma = \frac{2\sigma_s}{\sqrt{3}} \ln \frac{R}{r} + \frac{2}{3} \Pi \ln^2 \frac{R}{r} - \frac{2}{3} \Pi \ln \frac{R}{r} - \frac{\sigma_s}{\sqrt{3}}.$$
 (18)

Тогда система (16) с учетом уравнения (18) запишется:

238

$$\sigma_{\Theta\Theta} = \frac{2\sigma_s}{\sqrt{3}} \ln \frac{R}{r} + \frac{2}{3} \Pi \ln^2 \frac{R}{r} - \frac{4}{3} \Pi \ln \frac{R}{r} - \frac{2\sigma_s}{\sqrt{3}}; \quad (19)$$

На фиг. 4 приведено распределение тангенциальных, радиальных и осевых напряжений. Кривая 1 соответствует $\sigma_s = 18 \frac{\kappa z}{\pi \mu^2}, \ \Pi = 165 \frac{\kappa z}{\pi M^2}.$ Кривая $2 - \sigma_s = 9 \frac{\kappa z}{\pi M^2}, \ \Pi = 90 \frac{\kappa z}{\pi M^2}.$

Используя значение σ_{rr} из (19), получим выражение для максимальных радиальных напряжений:

$$\sigma_{rr\,\max} = \frac{2\sigma_s}{\sqrt{3}} \ln \frac{R}{r_0} + \frac{2}{3} \Pi \ln^2 \frac{R}{r_0},\tag{20}$$

где ro — внутренний радиус фланца.

С другой стороны, величина максимальных радиальных напряжений, возникающих в материале фланца, может быть равной следующему выражению:

$$\sigma_{uu\max} = \sigma_a + \Pi \alpha, \tag{21}$$

где а — деформация в момент образования шейки.

Приравнивания (20 и (21), получим следующее квадратное уравнение:

$$\frac{2}{3} \Pi \ln^2 \frac{1}{K} + \frac{2\sigma_s}{\sqrt{3}} \ln \frac{1}{K} - (\sigma_s + \Pi \alpha) = 0,$$
(22)

где К — коэффициент вытяжки, равный $\frac{r_0}{R}$.

Решая уравнение (22) относительно K, получим выражение для предельного коэффициента вытяжки:

$$K^* = \frac{1}{e \left[\frac{\sqrt{1+2n(1+n^2)}}{1,155}\right]},$$
 (23)

где

$$n = \frac{\Pi}{\sigma_s} = \frac{\sigma_b - \sigma_s}{\sigma_s \cdot a} = \frac{1}{a} \left(\frac{\sigma_b}{\sigma_s} - \frac{1}{a} \right); \tag{24}$$

σ_в — предел прочности материала.

В таблице приведены теоретические коэффициенты вытяжки, рассчитанные по (23) и экспериментальные значения *К*, рекомендуемые Ю. П. Давыдовым и Г. В. Покровским [3].

^{*} В данном случае под предельным коэффициентом вытяжки подразумевается рабочий коэффициент вытяжки, так как характеристики материала σ_b и α соответствуют такому состоянию материала, при котором не образуются большие местные деформации.

Как видно из таблицы, расхождение между теоретическими и экспериментальными значениями коэффициентов вытяжки составляет не более 10%.

Таблица 1

			and the second se		
Мате- риал	σ _b σ _s	α	n	$K_{\mathrm{reop.}}$	К _{эксп.}
АМЦАМ отожж.	2,5-2,86	0,15-0,20	9,3-1,0	0,58—0,584	0,54-0,56
Д16 отожж.	1,925-2,08	0,14-0,15	6,16-7,7	0,572-0,58	0,54-0,556
B95	2,0-2,22	0,12-0,14	8,33-8,725	0,558-0,595	0,555-0,57
08KII	Ĩ,59	0,23	2,56	0,5	0,53-0,55
Ст20	1,56	0,18	3,1	0,532	0,56-0,88
30ΧΓCΑ	1,54	0,12	4,5	0,578	0,57-0,58
1X18H9T	2,13-2,22	0,2-0,35	3,23-6,1	0,5-0,544	0,525-0,55
BT-1	1,125-1,18	0,09-0,1	1,25-2,0	0,521-0,55	0,57-0,6

выводы

В работе путем интегрирования дифференциальных уравнений движения Навье-Стокса получено поле напряжений при пластическом течении металла плоского фланца заготовки при прямой штамповке-вытяжке с учетом упрочнения материала.

При использовании выражения для радиальных напряжений получены теоретические значения предельных коэффициентов вытяжки.

Небольшие расхождения между теоретическими и экспериментальными значениями коэффициентов вытяжки объясняются, главным образом, принятыми допущениями, а также использованием в работе линейной аппроксимации диаграммы истинных напряжений, в связи с чем авторами ведутся работы по уточнению полученных результатов. 240

ЛИТЕРАТУРА

1. Ю. Н. Алексеев. Вопросы пластического течения металлов. Изд. ХГУ, Харьков, 1958.

2. Н. Е. Кочин. Векторное исчисление и начало тензорного. ОНТИ, 1937.

 Ю. П. Давыдов и Г. В. Покровский. Листовая штамповка легированных сталей и сплавов. Оборонгиз, 1962.