КУЙБЫШЕВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ им. С. П. КОРОЛЕВА Труды, выписк 48, 1971 г.

Вопросы прочности элементов авиационных конструкций

Ю. Л. Тарасов

НЕКОТОРЫЕ ПРИБЛИЖЕННЫЕ РЕШЕНИЯ УРАВНЕНИЙ ИЗГИБА СФЕРИЧЕСКОЙ ОБОЛОЧКИ ПРИ ОСЕСИММЕТРИЧНОМ НАГРУЖЕНИИ

Принятые обозначения

- R, δ радиус и толщина оболочки;
- *и*, *w* перемещения точки срединной поверхности оболочки:
- ε₁, ε, ε₂ относительные удлинения срединной поверхности оболочки;
 ψ угол поворота нормали к меридиану оболочки;
 - Ф приращение радиуса параллельного круга оболочки;

 - и, E коэффициент Пуассона и модуль упругости материала оболочки:

M1, M2, Q, N1, N2-- изгибающие моменты, перерезывающая сила и нормальные усилия:

Ф --- угловая координата, определяющая положение точки на меридиане оболочки.

Основное уравнение осесимметричного изгиба сферической оболочки [1, 2]

$$\frac{d^2Q}{d\varphi^2} + \frac{dQ}{d\varphi}\operatorname{ctg}\varphi - Q\operatorname{ctg}^2\varphi + 2i\varkappa^2 Q = 0, \tag{1}$$

можно привести к виду [6]

$$(1-x^2)\frac{d^2Q}{dx^2} - \frac{(1-3x^2)}{x}\frac{dQ}{dx} + Q\left[8ix^2 - \frac{(1-2x^2)^2}{x^2(1-x^2)}\right] = 0, \qquad (2)$$

гле

 $x = \sin \frac{\varphi}{2}$.

Решение уравнения (1) записывается в форме

$$Q = A_1 a_1(\varphi) + B_1 b_1(\varphi) + A_2 a_2(\varphi) + B_2 b_2(\varphi).$$
(3)

Злесь

$$a_{1} = \sqrt{\frac{\varphi}{\sin\varphi}} ker'z,$$

$$b_{1} = \sqrt{\frac{\varphi}{\sin\varphi}} kei'z,$$

$$a_{2} = \sqrt[7]{\frac{\varphi}{\sin\varphi}} ber'z, \qquad (4)$$

$$b_{2} = \sqrt{\frac{\varphi}{\sin\varphi}} bei'z, \qquad (4)$$

$$z = \sqrt{2} \times \varphi.$$

Формулы для определения усилий и деформаций имеют вид:

$$N_1 = A_1 c_1(\varphi) + B_1 d_1(\varphi) + A_2 c_2(\varphi) + B_2 d_2(\varphi) + p \frac{R}{2} + \frac{N \sin \varphi_1}{\sin^2 \varphi}, \quad (5)$$

$$N_2 = A_1 e_1(\varphi) + B_1 f_1(\varphi) + A_2 e_2(\varphi) + B_2 f_2(\varphi) + p \frac{R}{2} - \frac{N \sin \varphi_1}{\sin^2 \varphi}, \quad (6)$$

$$M_{1} = \delta \left[A_{1}g_{1}(\varphi) + B_{1}h_{1}(\varphi) + A_{2}g_{2}(\varphi) + B_{2}h_{2}(\varphi) \right],$$
(7)
$$M_{2} = \delta \left[A_{1}p_{1}(\varphi) + B_{2}q_{2}(\varphi) + A_{2}p_{2}(\varphi) + B_{2}q_{2}(\varphi) \right],$$
(8)

$$\varepsilon_{1} = \frac{1}{E\delta} \Big[A_{1}r_{1}(\varphi) + B_{1}s_{1}(\varphi) + A_{2}r_{2}(\varphi) + B_{2}s_{2}(\varphi) + B_{2}s_{2}(\varphi) + B_{2}s_{2}(\varphi) \Big]$$

$$+ (1-\mu)\frac{pR}{2} + (1+\varphi)\frac{N\sin\varphi_1}{\sin^2\varphi} \Big], \qquad (9)$$

$$\varepsilon_{2} = \frac{1}{E\delta} \left[A_{1}t_{1}(\varphi) + B_{1}k_{1}(\varphi) + A_{2}t_{2}(\varphi) + B_{2}k_{2}(\varphi) + (1-\mu)\frac{pR}{2} - (1+\mu)\frac{N\sin\varphi_{1}}{\sin^{2}\varphi} \right],$$
(10)

$$\vartheta = \frac{1}{E\delta} \left[A_1 m_1(\varphi) + B_1 n_1(\varphi) + A_2 m_2(\varphi) + B_2 n_2(\varphi) \right], \tag{11}$$

$$\Delta = \frac{1}{E} \left[A_1 u_1(\varphi) + B_1 v_1(\varphi) + A_2 u_2(\varphi) + B_2 v_2(\varphi) + \frac{(1-\mu) p R^2 \sin^2 \varphi}{2\delta} - \frac{1+\mu}{\delta} \frac{NR \sin \varphi_1}{\sin \varphi} \right],$$
(12)

$$u = \frac{1}{E} \left[A_1 \overline{a_1}(\varphi) + B_1 \overline{b_2}(\varphi) + A_2 \overline{a_2}(\varphi) + B_2 \overline{b_2}(\varphi) + \frac{(1+\mu)NR\sin\varphi_1}{2} \left(\ln t \varphi - \frac{\cos\varphi}{2} \right) \sin\varphi \right]$$
(13)

$$+ C\sin\varphi + \frac{(1+\mu)NR\sin\varphi_1}{2E\delta} \left(\ln tg \frac{\varphi}{2} - \frac{\cos\varphi}{\sin^2\varphi}\right)\sin\varphi, \quad (13)$$

$$m = \frac{1}{2} \left[A_1\overline{C_1}(\varphi) + B_1\overline{d_2}(\varphi) + A_2\overline{C_2}(\varphi) + B_2\overline{d_2}(\varphi)\right] + \frac{1}{2} \left[A_1\overline{C_2}(\varphi) + B_2\overline{C_2}(\varphi)\right] + \frac{1}{2}$$

$$= \frac{R}{E} \left[(1 - \mu) \frac{pR}{2} - (1 + \mu) \frac{N \sin \varphi_1}{\sin^2 \varphi} \right] - C \cos \varphi - \frac{(1 + \mu)NR \sin \varphi_1}{2E\delta} \left[(\ln tg \frac{\varphi}{2} - \frac{\cos \varphi}{2\sin^2 \varphi}) \cos \varphi. \right]$$
(14)

Положительные направления усилий и перемещений показаны на фиг. 1.

В формулах (15) — (14) использованы обозначения

$$c_1 = -a_1(\varphi) \operatorname{ctg} \varphi, d_1 = -b_1(\varphi) \operatorname{ctg} \varphi;$$
(15)

$$e_{1} = \sqrt{2} \times \sqrt{\frac{\varphi}{\sin\varphi}} \Big[keiz + \frac{1}{2\sqrt{2}\kappa} \Big(\frac{1}{\varphi} + \operatorname{ctg}\varphi \Big) ker'z \Big],$$
(16)
$$f_{1} = -\sqrt{2} \times \sqrt{\frac{\varphi}{\sin\varphi}} \Big[kerz - \frac{1}{2\sqrt{2}\kappa} \Big(\frac{1}{\varphi} + \operatorname{ctg}\varphi \Big) kei'z \Big];$$
(17)
$$g_{1} = \frac{1}{2\kappa^{2}} \frac{R}{\delta} \Big[\frac{\mu}{2\kappa^{2}} e_{1}(\varphi) - f_{1}(\varphi) + \frac{\mu\operatorname{ctg}\varphi}{2\kappa^{2}} m_{1}(\varphi) \Big],$$
(17)
$$h_{1} = \frac{1}{2\kappa^{2}} \frac{R}{\delta} \Big[\frac{\mu}{2\kappa^{2}} f_{1}(\varphi) + e_{1}(\varphi) + \frac{\mu\operatorname{ctg}\varphi}{2\kappa^{2}} n_{1}(\varphi) \Big];$$
(17)

Фиг. 1.

$$p_{1} = \frac{\mu}{2\kappa^{2}} \frac{R}{\delta} \left[\frac{\mu}{2\kappa^{2}} e_{1}(\varphi) - f_{1}(\varphi) + \frac{\operatorname{ctg}\,\varphi}{2\mu\kappa^{2}} \,m_{1}(\varphi) \right],$$

$$q_{1} = \frac{\mu}{2\kappa^{2}} \frac{R}{\delta} \left[e_{1}(\varphi) + \frac{\mu}{2\kappa^{2}} f_{1}(\varphi) + \frac{\operatorname{ctg}\,\varphi}{2\mu\kappa^{2}} \,n_{1}(\varphi) \right];$$
(18)

$$q_{1} = \frac{1}{2\kappa^{2}} \frac{1}{\delta} \left[e_{1}(\varphi) + \frac{1}{2\kappa^{2}} f_{1}(\varphi) + \frac{1}{2\mu\kappa^{2}} h_{1}(\varphi) \right];$$

$$r_{1} = c_{1}(\varphi) - \mu e_{1}(\varphi), \quad s_{1} = d_{1}(\varphi) - \mu f_{1}(\varphi);$$
 (10)

$$f_1 = e_1(\varphi) - \mu c_1(\varphi), \quad s_1 = t_1(\varphi) - \mu f_1(\varphi), \quad (19)$$

$$f_1 = e_1(\varphi) - \mu c_1(\varphi), \quad k_1 = f_1(\varphi) - \mu d_1(\varphi); \quad (20)$$

$$m_1 = 2\varkappa^2 \sqrt{\frac{\varphi}{\sin\varphi}} \left(kei'z - \frac{\mu}{2\varkappa^2} ker'z \right), \tag{21}$$

$$n_1 = -2x^2 \sqrt{\frac{\varphi}{\sin\varphi}} \left(ker'z + \frac{\mu}{2x^2} kei'z \right);$$

$$u_{1} = \frac{R}{\delta} \left[e_{1}(\varphi) - \mu c_{1}(\varphi) \right] \sin \varphi, \quad v_{1} = \frac{R}{\delta} \left[f_{1}(\varphi) - \mu d_{1}(\varphi) \right] \sin \varphi; \quad (22)$$
$$\overline{a}_{1} = (1 + \mu) \frac{R}{\delta} a_{1}(\varphi), \quad \overline{b}_{1} = (1 + \mu) \frac{R}{\delta} b_{1}(\varphi); \quad (23)$$

$$a_{1} = (1 + \mu) \frac{\kappa}{\delta} a_{1}(\varphi), \quad \overline{b}_{1} = (1 + \mu) \frac{\kappa}{\delta} b_{1}(\varphi); \tag{23}$$

$$\overline{c}_1 = \frac{R}{\delta} t_1(\varphi) - \overline{a}_1(\varphi) \operatorname{ctg} \varphi, \quad \overline{d}_1 = \frac{R}{\delta} k_1(\varphi) - \overline{b}_1(\varphi) \operatorname{ctg} \varphi.$$
(24)

Для определения функций $c_2(\varphi)$, $d_2(\varphi)$ и т. д. следует воспользоваться формулами (15)—(24), подставив в них вместо keiz, ker z соответственно beiz, ber z. Приведенные выше соотношения выражаются, как видно, через функции, числовые значения которых могут быть взяты из таблиц [5], составленных достаточно подробно. Заметим, что при z > 6 функции Томсона и их производные могут быть удовлетворительно представлены выражениями

$$ber z \simeq \frac{1}{\sqrt{2\pi z}} e^{\frac{z}{\sqrt{2}}} \cos\left(\frac{z}{\sqrt{2}} - \frac{\pi}{8}\right),$$

$$bei z \simeq \frac{1}{\sqrt{2\pi z}} e^{\frac{z}{\sqrt{2}}} \sin\left(\frac{z}{\sqrt{2}} - \frac{\pi}{8}\right),$$

$$ber' z \simeq \frac{1}{\sqrt{2\pi z}} e^{\frac{z}{\sqrt{2}}} \cos\left(\frac{z}{\sqrt{2}} + \frac{\pi}{8}\right),$$

$$bei' z \simeq \frac{1}{\sqrt{2\pi z}} e^{\frac{z}{\sqrt{2}}} \sin\left(\frac{z}{\sqrt{2}} + \frac{\pi}{8}\right),$$
(25)

ker
$$z \simeq \sqrt{\frac{\pi}{2z}} e^{-\frac{z}{\sqrt{2}}} \cos\left(\frac{z}{\sqrt{2}} + \frac{\pi}{8}\right),$$

keiz
$$\simeq -\sqrt{\frac{\pi}{2z}} e^{-\frac{z}{\sqrt{2}}} \sin\left(\frac{z}{\sqrt{2}} + \frac{\pi}{8}\right),$$

$$ker'z \simeq -\sqrt{\frac{\pi}{2z}} e^{-\frac{\sqrt{z}}{\sqrt{2}}} \cos\left(\frac{z}{\sqrt{2}} - \frac{\pi}{8}\right),$$
$$kei'z \simeq \sqrt{\frac{\pi}{2z}} e^{-\frac{z}{\sqrt{2}}} \sin\left(\frac{z}{\sqrt{2}} - \frac{\pi}{8}\right).$$

Эти приближенные значения тем точнее, чем больше z. Используя эти формулы, выражение (3) можно свести к виду

$$Q = \frac{1}{|\sin\varphi|} \left[e^{-\varkappa\varphi} \left(A_1 \cos \varkappa\varphi + B_1 \sin \varkappa\varphi \right) + e^{\varkappa\varphi} \left(A_2 \cos \varkappa\varphi + B_2 \sin \varkappa\varphi \right) \right].$$
(26)

Выражения для усилий и перемещений после подстановки (25) в (5) — (12) приобретают вид

$$N_{1} = -\frac{\operatorname{ctg}\,\varphi}{\sqrt{\sin\varphi}} \left[e^{-x\varphi} \left(A_{1}\cos x\varphi + B_{1}\sin x\varphi \right) + e^{x\varphi} \left(A_{2}\cos x\varphi + B_{2}\sin x\varphi \right) \right] + p \frac{R}{2} + \frac{N\sin\varphi_{1}}{\sin_{2}\varphi}, \tag{27}$$

$$N_{2} = -\frac{\sqrt{2} \times}{\sqrt{\sin \varphi}} \left\{ -e^{-x\varphi} \left[A_{1} \sin\left(x\varphi + \frac{\pi}{4}\right) - B_{1} \cos\left(x\varphi + \frac{\pi}{4}\right) \right] + e^{x\varphi} \left[A_{2} \cos\left(x\varphi + \frac{\pi}{4}\right) + B \sin\left(x\varphi + \frac{\pi}{4}\right) \right] \right\} + p \frac{R}{2} - \frac{N \sin \varphi_{1}}{\sin^{2}\varphi}, \quad (28)$$

$$M_{1} = \frac{R}{\sqrt{2} \times \sqrt{\sin \varphi}} \left\{ -e^{-x\varphi} \left[A_{1} \cos\left(x\varphi + \frac{\pi}{4}\right) + B_{1} \sin\left(x\varphi + \frac{\pi}{4}\right) \right] + e^{x\varphi} \left[A_{2} \sin\left(x\varphi + \frac{\pi}{4}\right) - B_{2}^{2} \cos\left(x\varphi + \frac{\pi}{4}\right) \right] \right\}, \quad (29)$$

$$M_2 = \mu M_1, \tag{30}$$

$$\Delta = \frac{R \sin \varphi}{E \delta} (N_2 - \mu N_1), \qquad (3)$$

$$\theta = \frac{2\varkappa^2}{E_0 \gamma \sin \varphi} \left[-e^{-\varkappa \varphi} \left(A_1 \sin \varkappa \varphi - B_1 \cos \varkappa \varphi \right) - -e^{\varkappa \varphi} \left(A_2 \sin \varkappa \varphi - B_2 \cos \varkappa \varphi \right) \right].$$
(32)

Так как эти соотношения справедливы при $z = \sqrt{2} \varkappa \phi > 6$, то со ответствующее значение ϕ определяется условием

$$\varphi > \frac{3\sqrt{2}}{x} . \tag{3}$$

Из этого условия видно, что углы ф, соответствующие «большо му» значению аргумента *z*, для тонких оболочек не особенно вели ки. График, ограничивающий значения углов ф по условию (33 представлен на фиг. 2.

Фиг. 2.

Формулы, аналогичные приведенным выше, приводятся в известной монографии [1] на основе решения приближенного уравнения

$$y^{IV} + 4x^4y = 0, \qquad (34)$$
$$y = Q\sqrt{\sin\varphi}.$$

где

При этом отмечается, что пользоваться ими можно для углов φ , больших по величине даже для тонких оболочек, у которых R/δ представляет собой большое число.

То обстоятельство, что формулы (26)—(32) являются частным случаем выражений (5)—(12), несколько расширяют границы их применения, что особенно важно при их несомненной простоте

Когда угол
$$\varphi$$
 мал, то $\sqrt{\frac{\varphi}{\sin \varphi}} \simeq 1$ и выражение (3) принимает вид

$$Q = A_1 k e r' z + B_1 k e i' z + A_2 b e r' z + B_2 b e i' z.$$
(35)

Этот результат получается и при подстановке в дифференциальное уравнение (1) первого члена разложения ctg в ряд

$$\operatorname{ctg} \varphi = \frac{1}{\varphi} - \frac{\varphi}{3} - \dots \tag{36}$$

Все необходимые выражения в этом случае могут быть получены путем замены $\sin \varphi \simeq t g \varphi \simeq \varphi$ в выражениях (5)—(14).

В заключение остановимся еще на одном обстоятельстве. Как известно, оболочки бывают «короткими» и «длинными». Для «длинных» оболочек можно пренебречь влиянием самоуравновешенных воздействий у одного края на напряженно-деформированное состояние возле другого края.

Если длина оболочки вдоль меридиана такова, что соответствующие верхнему и нижнему краям оболочки углы подчиняются условию [3] (при µ=0,3)

$$\varphi_1 - \varphi_2 > 1,65 \sqrt{\frac{\delta}{R}} , \qquad (37)$$

го, с точностью до 10%, такую оболочку можно считать длинной. При принятии более высокой, 5%-й точности расчета, условие (37) заменится следующим:

$$\varphi_1 - \varphi_2 > 2,3 \quad \sqrt{\frac{\delta}{R}} . \tag{38}$$

Будем считать, согласно Новожилову В. В., сферический пояс длинным, если центральный угол между краями сферической оболочки удовлетворяет условию

$$\varphi_1 - \varphi_2 \geqslant 2 \sqrt[n]{\frac{\delta}{R}}$$
 (39)

Давая отношению R/δ ряд значений, получим соответствующие разности ($\varphi_1 - \varphi_2$), которые приведены на фиг. 2-

Из фиг. 2 видно, что в практических расчетах сферический пояс всегда будет «длинным», и влиянием одного края на другой можно пренебречь.

ЛИТЕРАТУРА

 С. П. Тимошенко, С. Войновский-Кригер. Пластинки и оболочки. Физматтиз, 1963.

2. В. Флюгге. Статика и динамика оболочек. Госстройиздат, 1961.

3. Прочность. Устойчивость. Колебания. Под редакцией И. А. Биргера и Я. Г. Пановко. «Машиностроение», т. 1, 1968.

 4. Ю. Л. Тарасов. Определение напряжений в сочленении трубопровода со сферическим днищем бака. Труды КуАИ, вып. 39, 1968.
 5. Л. Н. Носова. Таблицы функций Томсона и их первых производных.

Л. Н. Носова. Таблицы функций Томсона и их первых производных.
 Изд-во АНСССР, 1960,
 F. A. Leckie. Localized Loads Applied to Spherical Shells, J. Mech.

6. F. A. Leckie. Localized Loads Applied to Spherical Shells, J. Mech. Engin. Sc., vol. 3, N 2, 1961.