С. И. ИВАНОВ, С. М. ЛЕЖИН

МОНТАЖНЫЕ НАПРЯЖЕНИЯ В ТРУБОПРОВОДАХ АВИАЦИОННЫХ СИСТЕМ ПРИ СЛОЖНОМ СОПРОТИВЛЕНИИ

Смонтированные трубопроводы испытывают начальные напряжения, которые являются результатом монтажа с неточностями. Монтажные напряжения, даже при сравнительно небольших неточностях, превышают предел текучести и заметно снижают сопротивление трубопровода изгибным вибрациям.

В наших предыдущих исследованиях [1] рассматривалась задача об упруго-пластических деформациях плоских трубопроводов при монтаже с неточностями.

Выбор неточностей происходил за счет изгиба трубки в своей плоскости.

Результаты исследования для трубок из IXI8Н9Т представлены / на фиг. 1.

Здесь є_{тах} — наибольшая относительная деформация в опасном сечении трубопровода;

 $\varepsilon_s = \frac{\sigma_s}{E}$ — относительная деформация, соответствующая пределу текучести.

- Δ любая простая неточность при монтаже трубопровода [1];
- Δ_s значение неточности, приводящее после монтажа к начальным напряжениям, наибольшее значение которых достигает предела текучести (σ_s).

Зависимость, изображенная на фит. 1, практически одинакова для всех диаметров, длин и конфигураций трубки.

При монтаже трубопровода с пространственной осью выбор неточностей происходит за счет изгиба с кручением. Изгиб с кручением может быть и при монтаже плоских трубок, когда перемещения при выборе неточностей не лежат в плоскости оси трубки. Возникает вопрос о возможности использования приведенной выше

зависимости в этом более сложном случае. На основании физических соображении, которые разбираются в

работе [1], на этот вопрос можно ответить утвердительно.

В настоящей статье эти соображения подкрепляются результатами расчетного исследования, которое заключалось в разборе нескольких численных примеров.

§1. Исходные данные для расчета

В примерах рассматривалась трубка из IXI8Н9Т диаметром 20×22 мм. Для расчетов необходимо располагать зависимостями:

$$rac{z_{\star}}{z_{s}} = f_1 \left(M_{\mathrm{Hor}}, M_{\mathrm{Kp}} \right)$$
 if $rac{\Theta}{\Theta_s} = \tilde{f}_2 \left(M_{\mathrm{Hor}}, M_{\mathrm{Kp}} \right)$,

где и — кривизна изогнутой оси трубки;

- \varkappa_s кривизна, при которой, в случае только изгиба $\sigma_{max} = \sigma_s$;
- σ_s − предел текучести;
- ⊖ относительный угол закручивания;
- Θ_s относительный угол закручивания, при котором, в случае только кручения, $\tau_{max} = \tau_s$;
- M_{ног} изгибающий момент в исследуемом сечении;

M_{кр} – крутящий момент в том же сечении.

Указанные зависимости можно получить, используя гипотезу плоских сечений, которая и при упруго-пластических деформациях остается достаточно точной [2].

На основании этой гипотезы

$$\gamma = \Theta \rho \quad \mathbf{u} \quad \mathbf{s} = \mathbf{x} \mathbf{z}, \tag{1}$$

где у — угловая и є — линейцая деформация в точке поперечного сечения с координатами z, y (фиг. 2).

На фиг. З изображено напряженное состояние в любой точке трубки.

Интенсивность деформаций в пластической зоне с учетом несжимаемости:

$$\varepsilon_i = \sqrt{\varepsilon^2 + \frac{1}{3} \gamma^2}$$

или, с учетом соотношений (1)

Напряжения в пластической зоне:

$$\sigma = \frac{\sigma_i}{\varepsilon_l} \circ \varkappa \tau = \frac{\sigma_i}{3\varepsilon_l} \tau.$$
(3)

При вычислениях по формулам (3) воспользуемся диаграммой напряжений (фиг. 4) и учтем, что при центральном растяжении в пластической области $\sigma_i = \sigma$ и $\varepsilon_i = \varepsilon$.

Фиг. 4.

Применяя параболическую аппроксимацию опытной кривой (фиг. 4) по трем точкам, получим:

$$\sigma_i = k + f \varepsilon_i + n \varepsilon_i^2, \tag{4}$$

где

$$k = 31.7 \frac{\kappa \Gamma}{MM^2}; \quad f = 197.5 \frac{\kappa \Gamma}{MM^2}; \quad n = -361 \frac{\kappa \Gamma}{MM^2}.$$

При сложном сопротивлении, в случае упруго-пластического изгиба с кручением, на границе между упругой и пластической зонами имеет место следующее соотношение:

$$\sigma^2 + 3\tau^2 = \sigma_s , \qquad (5)$$

где

$$\sigma = E \varkappa z \, \mathrm{i} \, \tau = G \Theta \rho. \tag{6}$$

Из соотношений (5) и (6) следует, что границей между упругой и пластической зонами является эллипс, большая ось которого перпендикулярна плоскости изгиба.

Возможны шесть случаев положения этой границы, которая на последующих рисунках изображена пунктирной линией.

В первом случае, показанном на фиг. 5, задача является упругой и, следовательно, имеют место следующие соотношения:

 $M_{\rm H32} = EIz; \quad M_{\rm Kp} = GI_{\rm p}\Theta. \tag{7}$ (7)

В случаях, изображенных на фиг. 6—9, задача является упругопластической и формулы для вычисления внутренних усилий имеют следующий вид:

В последнем случае, показанном на фиг. 10, все сечение охвачено пластическими деформациями.

Для вычисления внутренних усилий будем иметь:

$$M_{_{\mathrm{HSF}}} = \int_{F} \sigma z dF; \quad M_{\mathrm{KP}} = \int_{F} \tau \rho dF.$$
 (9)

Вычисление внутренних усилий проводим в следующей последовательности.

Задавшись значениями Θ и ×, по формулам (1) находим значения деформаций в различных точках сечения. Далее, вычисляем ε_i по формуле (2) и, используя равенство (4), находим отношение $\frac{\sigma_i}{\varepsilon_i}$ и подставляем его в формулы (3) для определения напряжений в пластической зоне. Напряжения в упругой зоне определяем по формулам (6). Граница между упругой и пластической зонами определяется по соотношению (5).

Фиг. 12.

В результате расчетов получаем следующие частные зависи мости:

$$\frac{\chi}{\chi_{s}} = \varphi_{1} \left[\frac{M_{\text{H3r}}}{M_{\text{H3r},s}} \right] \text{H} \quad \frac{\Theta}{\Theta_{s}} = \varphi_{2} \left[\frac{M_{\text{H3r}}}{M_{\text{H3r},s}} \right]$$

при

$$\frac{M_{\rm KP}}{M_{\rm KP, s}} = {\rm const.}$$

Здесь $M_{\text{H3.s}} = \sigma_s W_{\text{H3}}$ — изгибающий момент, при котором, в случае только изгиба, появляются первые пластические деформации. $M_{\text{кр.s}} = \tau_s W_{\text{кр}}$ — крутящий момент, при котором, в случае только кручения, появляются первые пластические деформации.

Необходимость только в частных зависимостях вызвана тем, что в рассматриваемых ниже задачах крутящий момент по длине участка трубопровода остается постоянным.

На фиг. 11 и 12 эти зависимости представлены графически. В дальнейших расчетах используется также диаграмма изгиба, приведенная в работе [1].

§ 2. Расчет монтажных напряжений при сложном сопротивлении (кручение с изгибом)

Рассматриваем три примера трубопровода (фиг. 13), два из них для схемы *а* и один — для схемы б.

Все неточности [1], кроме несоосности Δ_1 , отсутствуют.

Фиг. 13.

Выбор неточности ∆₁, происходит при сложной деформации трубопровода (изгиб с кручением).

При определении усилий, действующих на смонтированную трубку, воспользуемся тем, что все перемещения монтируемого сечения, 108 кроме Δ_1 и Δ_6 , равны нулю, а также установленным опытным путем равенством $X_6 \cong 0$.

Можно показать, что в этом случае $X_2 = X_3 = X_4 = 0$. Для определения X_1 и X_5 используем соотношения:

$$\int \times \bar{M}_{H3_1} ds + \int \Theta \bar{M}_{\kappa p_1} ds = \Delta_1, \qquad (10)$$

$$\int_{l} \times \overline{M}_{\mathbf{H}\mathbf{3}_{b}} ds + \int_{l} \Theta \overline{M}_{\mathbf{K}\mathbf{p}_{b}} ds = 0.$$
⁽¹¹⁾

Здесь $\overline{M}_{и_3.i}$ и $\overline{M}_{\kappa p.i}$ — изгибающий и крутящий моменты от единичного силового фактора соответствующего усилию X_i .

Практически, методом подбора устанавливаем значения X_1 и X_5 , удовлетворяющие уравнению (11), а затем по соотношению (10) определяем соответствующее им значение Δ_1 . Результаты решения

Фиг. 14.

Фиг. 15.

Фиг. 17.

Фиг. 16.

¹⁰⁹

в виде эпюр $M_{и_3}$ и $M_{\kappa p}$ представлены для случая a на фиг. *14 и 15 и для случая δ на фиг. 16. На фиг. 17, 18, и 19 изображены эпюры деформаций.

При кручении с изгибом оценку монтажных напряжений следует производить по интенсивности деформаций ε_i , которая вычисляется по формуле (2).

В первых двух случаях є max имеет место в монтируемом сечении, где трубка испытывает простую деформацию изгиба.

Однако, на одном из участков происходит изгиб с кручением, что характерно для трубопроводов с пространственной осью.

В третьем случае є, max находится на защемленном конце, гдетрубка испытывает сложную деформацию кручения с изгибом.

Следовательно, в этом примере воспроизводятся более общие условия, характерные для трубопровода с пространственной осью. В таблице 1 приведены результаты расчета.

T	а	б.	л	u	ų	a	ľ

		$\frac{\Delta}{I} \cdot 10^4$	$\frac{\Delta_s}{l} \cdot 10^4$	$\frac{\Delta}{\Delta_s}$	e _{imax}
Схема а	$l_2: l_1 = 7$	0,545	0,257	2,12	7,4
	$l_2: l_1 = 5$	0,953	0,249	3,83	18,1
Схема б		0,574	0,327	1,75	5,3

l — общая длина трубки.

После нанесения расчетных точек на график зависимости $\frac{\varepsilon_{max}}{\varepsilon_s} = f\left(\frac{\Delta}{\Delta_s}\right)$ (расчетные точки отмечены на фиг. 1) можно видеть, что они попадают в область, полученную при расчете плоских трубопроводов, испытывающих простую деформацию изгиба.

Следовательно, полученную нами зависимость (фиг. 1) для определения монтажных напряжений по исходным неточностям можно применять в самом общем случае, когда трубопровод имеет произвольную конфигурацию.

ЛИТЕРАТУРА

1. С. И. Иванов, С. М. Лежин. «Монтажные напряжения в трубопроводах авиационных систем при упруго-пластических деформациях. «Вибрационная прочность и надежность авиационных двигателей», труды КуАИ, выпуск XIX, 1965.

2. Ю. А. Раковщик. «Совместный изгиби кручение круглого стержня за пределом упругости», Известия АНССР «Механика и машиностроение», № 3. 1959.