ВОПРОСЫ ПРОЧНОСТИ ЭЛЕМЕНТОВ АВИАЦИОННЫХ КОНСТРУКЦИИ Межвузовский оборние, вып. I, 1974

M.B.Bexaros

К РАСЧЕТУ КОНСОЛЬНЫХ АНИЗОТРОПНЫХ ПЛАСТИН ПРИ СОВМЕСТНОМ ДЕЙСТВИИ ПОПЕРЕЧНОЙ НАГРУЗКИ И НЕРАВНОМЕРНОГО- НАГРЕВА

В последние годы вопросу построения приближенных методов расстои консольных конструктивно-энизотропных пластии переменной теоткооти удоляется много внимания как в нашей стране, так и за пуськом. Это овязано с тем, что такая пластина служит рассетной молольв современного тонкого многолонжеронного крыла малого удлинонии. Использонание гипотез теории пластие позволяет свести расчат текой оложной конструкции к значительно более простому и соотримому илгоритму, чем в методе конечных здементов [I]. В то да проми, остоятнонно, вти гипстезы несколько сужают область нозможного применания пластинной аналогии [2]. Тем не менее, использонания поканных приемлемость такой расчетной схемы для приятов рагулерной отруктуры, не несущих больших сосредоточенных натруски [2].

Во пери работах уколникото направления напряженно-деформароинисто соотолнию грал плистипы отыскивается как результат воздойствия лико вношная сил. Однако известно, что крыло летательного опперати подверсесте в полоте также в существенному нагрону. В сними с отым здеся проводено обобщение мотода расчета, развитото в работах антора [3 - 5], для учете одновременного поздействия на врымо пластипу инешной поперечной изгрузки и произведсного перевномерного объемного температурного поли.

Как и о [4] " носмитривается консольная властини перемонной жестности, отпосонные к носсугольным координатим (рис. 1).

- 4 -

Она асстоит из толстой верхней и нижней общивок, подкрепленных рабрами жоотности, создающими анизотропию упругих свойств. Продольные рабра (стрингеры, пояса лонжеронов) не параллельны друг дпугу, а поноречные (пояса нервюр) - параллельны плоскости залотни. То и другие схематизируются, как это принято в строительной моханико крыла, в виде гибних нитей, работающих только на отелью поприжения. Общивка находится в плоском напряженном состояним.

Томпоритурное поле предполагается стационарным. Изменение мохоничоских постоянных материала по температуре считается известным и учитывается при подсчете жесткостных характеристик иластины. В опнаи с тем, что температурные напряжения в крыле представлнот собой лишь часть суммарных, причем обычно меньшую, мембранные томпоротурные напряжения не учитываются. Таким образом, срединиим плоскость пластины считается нейтральной. Кроме того, как обычно, [6], предполагается, что гипотеза прямой нормали остаетоп оприподливой и нри неравномерном по толщине нагребе.

1. Кик и в [3, 4], прогиб пластины отыскиваем в виде ряда

$$\mathcal{W}(\eta,\xi) = \sum_{o}^{m} \varphi_{\kappa}(\eta)\xi^{\kappa}, \qquad (1)$$

и урнонения для определения неизвестных функций ψ_κ(η) получаем о помощью принципа возможных перемещений

$$\delta u^* = \delta A$$
, (2)

ноторый, следуя [6], считаем справедливым для рассматриваемой и лась посвязанной задачи термоупругости.

Дли работы внешней нагрузки &A на возможных перемещениях можно поспользоваться выражением, полученным ранее в [3, 4], тогдо как изменение потенциальной энертии пластины &U* будет обдоржать по сравнению с [4] дополнительные температурные члоны

$$\delta U^* = \delta U + \delta (\Delta U). \tag{3}$$

суммированием энергии, накапливаемой в общивке и ребрах (поясах нервыр, стрингерах), дою лнительное слагаемое в (3) также найдем как сумму

$$\delta(\Delta U) = \delta(\Delta U_{o\delta u}) + \delta(\Delta U_{nH}) + \delta(\Delta U_{cmP}) .$$
⁽⁵⁾

Для нахождения величины $\delta(\Delta U_{o\delta u})$ необходимо вначале получить для плоского напряженного состояния закон Гука с учетом нагрева в коссугольных координатах . В прямоугольных координатах хоц (рис.I) этот закон имеет вид [7]

$$\begin{split} \mathfrak{G}_{x} &= \frac{E}{1-\mu^{2}} \left[\mathcal{E}_{x} + \mu \mathcal{E}_{y} - (1+\mu) dT \right] \\ \mathfrak{G}_{y} &= \frac{E}{1-\mu^{2}} \left[\mathcal{E}_{y} + \mu \mathcal{E}_{x} - (1+\mu) dT \right] \\ \mathfrak{T}_{xy} &= \frac{E}{2(1+\mu)} \mathcal{Y}_{xy} \,. \end{split}$$

$$\end{split}$$

Используем установленную в [8] связь между компонентами напряжений и деформаций в прямоугольных хоу и косоугольных и о ξ осях (рис. I)

$$G_{1} = G_{x} \frac{1}{\cos \psi}, \qquad G_{\xi} = G_{x} \frac{\sin^{2} \psi}{\cos \psi} + G_{y} \cos \psi + 2\tau_{xy} \sin \psi$$

$$\tau_{1\xi} = G_{x} t_{g} \psi + \tau_{xy}$$
(7)

Ħ

гло и

$$\varepsilon_{x} = \varepsilon_{\gamma} \frac{1}{\cos^{2} \psi} + \varepsilon_{\xi} tg^{2} \psi + \gamma_{\gamma\xi} \frac{\sin \psi}{\cos^{2} \psi}, \quad \varepsilon_{y} = \varepsilon_{\xi}$$

$$\chi_{\pi \psi} = 2\varepsilon_{\xi} tg \psi + \gamma_{\mu\xi} \frac{1}{\cos^{2} \psi}, \quad \varepsilon_{\chi} = \varepsilon_{\xi}$$
(8)

иссоугольных координатех:

$$\begin{split} & \Theta_{\eta} = \frac{E}{(1-\mu^{2})\cos^{3}\Psi} \left[\mathcal{E}_{\eta} + \mu_{2}\mathcal{E}_{\xi} + \Theta_{\eta\xi} - (1-\Theta^{2})(1+\mu)dT \right] \\ & \Theta_{\xi} = \frac{E}{(1-\mu^{2})\cos^{3}\Psi} \left[\mathcal{E}_{\xi} + \mu_{2}\mathcal{E}_{\eta} + \Theta_{\eta\xi} - (1-\Theta^{2})(1+\mu)dT \right] \end{split}$$
(9)

$$\mathcal{L}_{\eta,\xi} = \frac{E}{(1-\mu^2)\cos^3\psi} \left[\Theta \mathcal{E}_{\eta} + \Theta \mathcal{E}_{\xi} + \frac{1}{2} (1-\mu_1) \gamma_{\eta,\xi} - \Theta (1-\theta^2) (1+\mu) \mathcal{A} T \right],$$
chores a second we be defined by $\left[3 \right]$ of calculations

 $\theta = \sin \psi$, $\mu_1 = \mu - (1+\mu)\theta^2$, $\mu_z = \mu + (1-\mu)\theta^2$.

Для робор, находящихся в одноосном напряженном состоянии, формулы (9) упрощаются. Так, для поясов нервюр 5₁ = 7₂₅ = 0 (рис. I), тогло им (9) следует

$$G_{\xi} = E \cos \psi \left(\mathcal{E}_{\xi} - \mathcal{A}^{T} \right). \tag{10}$$

Для стрингеров вводятся вспомогательные координатные системы $\eta_1 \circ_{i} t_i$ (рис. I), совпадающие с их осями. Записывая (9) в этих сони и учитывая, что $\mathfrak{S}_{i} = \mathfrak{T}_{\eta_1 \in i} = \mathfrak{O}$ (рис. I), имеем

$$\mathcal{G}_{\gamma_i} = \mathbb{E} \cos \mathcal{X}_i \left(\mathcal{E}_{\gamma_i} - \mathcal{A}^T \right). \tag{II}$$

Занимем потенциальную энергию общивки и ребер как полусумму производений напряжений на соответствующие деформации и заменим напряжения по формулам (9) - (II), а деформации - по соотношениям Киркгоффа:

$$\mathcal{E}_{\eta} = -\zeta \frac{\partial^2 w}{\partial \eta^2}, \quad \mathcal{E}_{\xi} = -\zeta \frac{\partial^2 w}{\partial \xi^2}, \quad \mathcal{Y}_{\eta\xi} = -2\zeta \frac{\partial^2 w}{\partial \eta \partial \xi}, \quad \mathcal{E}_{\etai} = -\zeta_i \frac{\partial^2 w}{\partial \eta^2}.$$

Последнее выражение после перехода к общим осям будет: $E_{\chi_i} = S_i \frac{1}{\cos^2 \Psi} \left[\frac{\partial^2 w}{\partial \chi^2} \cos^2 \chi_i + \frac{\partial^2 w}{\partial \xi^2} \sin^2 (\chi_i - \Psi) - 2 \frac{\partial^2 w}{\partial \chi \partial \xi} \cos \chi_i \sin(\chi_i - \Psi) \right]$

Заменяя w по (I) и вычисляя малое приращение потенциальпой энергии, получим дополнительное слагаемое (5) в виде

$$\delta(\Delta U) = \int_{0}^{\infty} d\eta \sum_{k=0}^{\infty} \left\{ \Psi_{k_{0}} \delta \varphi_{k} + \Psi_{k_{1}} \delta \varphi_{k}' + \Psi_{k_{2}} \delta \varphi_{k}'' \right\}, \qquad (I2)$$

гдо

$$\Psi_{\kappa_{0}} = \kappa (\kappa - 1) \left[\int_{g}^{g} (\mathfrak{X}_{obu} + \mathfrak{X}_{n\kappa}) \xi^{\kappa - 2} d\xi + \sum \mathfrak{X}_{cmp_{1}} \xi^{\kappa - 2} \sin^{2} (\mathfrak{X}_{1} - \Psi) \right]$$

$$\Psi_{\kappa_{1}} = 2\kappa \left[\theta \int_{g}^{g} \mathfrak{X}_{obu} \xi^{\kappa - 4} d\xi - \sum \mathfrak{X}_{cmp_{1}} \xi^{\kappa - 1}_{i} \cos \mathfrak{X}_{i} \sin (\mathfrak{X}_{1} - \Psi) \right], \quad (I3)$$

$$\Psi_{\kappa_{2}} = \int \mathfrak{X}_{obu} \xi^{\kappa} d\xi + \sum \mathfrak{X}_{cmp_{1}} \xi^{\kappa}_{i} \cos^{2} \mathfrak{X}_{i}$$

В (13) интегрирование ведется по всей хорде в сечения (рип. 1), а сумны распространяются на все продольные ребра. Кроме того, в (13) введены обозначения

 $\frac{1}{2\cos \psi} \int_{0}^{\infty} \frac{E}{1-\mu} \zeta dT d\zeta, \\ \mathcal{R}_{nH} = \frac{1}{2}\cos \psi \int_{0}^{\infty} E \zeta dT d\zeta, \\ \mathcal{R}_{nH} = \frac{1}{2}\cos \psi \int_{0}^{\infty} E \zeta dT dF (I4)$ PAO II HOPMAX ДВУХ ВЫРАХЕНИЯХ ИНТЕГРАЛЫ ОСРУГСЯ ПО ВЫСОТЕ ОСНИВ-

ки и поясов, а в последнем - по площади С -го стрингера (пояса лонжерона)^{ж)}.

. Сложим (I2) с (4) и приравняем, на основании (2), работе &A, выражаемой формулой [3]:

$$\delta A = \int d\eta \sum_{\kappa}^{m} S_{\kappa} \delta \varphi_{\kappa} + \sum_{\alpha}^{m} \left[B_{\kappa} \delta \varphi_{\kappa}^{\prime} + T_{\kappa} \delta \varphi_{\kappa} \right]_{\eta = \ell} , \qquad (15)$$

где S_к(1), В_к, Т_к - соответственно характеристики внешней поверхностной и концевой сосредоточенной нагрузок (см. [3]).

После проведения тех же операций, что и в [4], получим систему дифференцияльных уравнений

$$\Phi_{\kappa_{2}} - \Phi_{\kappa_{1}}' + \Phi_{\kappa_{2}}'' = S_{\kappa} - \Psi_{\kappa_{0}} + \Psi_{\kappa_{1}}' - \Psi_{\kappa_{2}}'' \quad (\kappa = 0, 1, ..., m) \quad (16)$$

и естественные краевые условия на свободном торце

$$\left[\Phi_{\kappa_{1}} - \Phi_{\kappa_{2}}^{\prime} \right]_{\eta = \ell} = T_{\kappa} - \left\{ \Psi_{\kappa_{1}} - \Psi_{\kappa_{2}}^{\prime} \right\}_{\eta = \ell}, \quad \left\{ \Phi_{\kappa_{2}} \right\}_{\eta = \ell} = B_{\kappa} - \left\{ \Psi_{\kappa_{2}} \right\}_{\ell} = \ell^{\prime} (17)$$

Последние совместно с геометрическими условиями в заделке

$$\Psi_{\kappa}(0) = \varphi_{\kappa}^{1}(0) = 0$$
 (k=0,1,...,m).

В (16), (17) члены с $\Psi_{K_{1}}$ перенесены в правые части, т.к. согласно (13), (14) они, в отличие от $\Phi_{K_{1}}$, не содержат неизвестных функций $\varphi_{\kappa}(\eta)$ и могут быть заранее подсчитаны по заданному температурному полю T (η , ξ , ζ), как и характеристики внешней нагрузки S_{κ} , T_{κ} , B_{κ} .

Сравнение (I6), (I7) с формулями (5), (6) работы [4] показывает, что эффект награва эквивалентен догрузке конструкции внемней поверхностной и концевой нагрузками с характеристиками:

 $\Delta S_{\kappa} = -\Psi_{\kappa_{0}} + \Psi_{\kappa_{1}}' - \Psi_{\kappa_{2}}'', \quad \Delta T_{\kappa} = -\left\{\Psi_{\kappa_{1}} - \Psi_{\kappa_{2}}'\right\}_{\eta = \ell}, \quad \Delta B_{\kappa} = -\left\{\Psi_{\kappa_{2}}\right\}_{\eta = \ell}. (18)$

2. Подставляя в (16) выражения Φ_{κ_1} через искомые функции $\Psi_{\kappa}(\eta)$ по (3) [4], получим систему дифференциальных уравнений для определения последних. Для реальных конструкций эте система будет иметь переменные коэффициенты τ (4) [4]. Поэтому ее решение возможно лиць численными методами. В работе [5] для

Эдесь так же, как и в [4], дискретные поперачные ребра учитывають ся как непрерывно распределенные ("размытые") по размаху. Продольные ребра рассматриваются дискретными.

системы (5), [4], был успешно использован численный аппарат интегрирующих матриц. Поскольку влияние нагрева свелось лишь к "догрузке" конструкции (18), очевидно, что этот путь решения применим и к уравнениям (16). Однако в связи с появлением концевой "догрузки" в (17), которая в [5] отсутствовала, здесь необходимо разрешающее матричное уравнение получить заново. При этом, как и в [5], полагаем, что внешняя концевая нагрузка на пластину отсутствует, т.е. $T_{\nu} = B_{\nu} = 0$.

Проинтегрируем каждое уравнение (16) дважды от 7 до l . Тогда после использования краевых условий (17) будем иметь

$$\int_{1}^{1} d\eta \int_{\eta} \Phi_{\kappa_{0}} d\eta + \int_{\eta} \Phi_{\kappa_{1}} d\eta + \Phi_{\kappa_{2}} = \int_{\eta}^{1} d\eta \int_{\eta} (S_{\kappa} - \Psi_{\kappa_{0}}) d\eta - \int_{\eta}^{1} \Psi_{\kappa_{1}} d\eta - \Psi_{\kappa_{2}} .$$
(19)

$$\mathcal{J}_{1}^{2} \phi_{\kappa_{0}} + \mathcal{J}_{1} \phi_{\kappa_{1}} + \phi_{\kappa_{2}} = \mathcal{J}_{1}^{2} \mathfrak{s}_{\kappa} - \mathcal{J}_{1}^{2} \psi_{\kappa_{0}} - \mathcal{J}_{1} \psi_{\kappa_{1}} - \psi_{\kappa_{2}}, \qquad (20)$$

где [, – интегрирующая матрица первого рода [9];

ф_к, Ψ_к, S_к - столбцы значений соответствующих величин в расчетных сечениях.

Выражая дальше, подобно тому, как это сделено в [5], Φ_κ через φ_κ (η_i) и представляя систему (20) в виде одного уравнения, получим окончательно

$$A \phi'' - \Pi_1^2 s - \Pi_1^2 \psi_2 - \Pi_1 \psi_1 - \psi_2 , \qquad (21)$$

где ψ^* — столбец, составленный из столбцов значений ψ''_{x} ($\kappa = 0, I, ..., m$) в расчетных сечениях; **S**, ψ'_{z} —подобные же стоябщи из S_K, $\phi_{\kappa j}$, . Матрицы же A и П имеют тот же выд, что и в (9) [5].

Обращением матрицы A нз (21) находится φ'' , затем по (12), (13) [5] вычисляются $\varphi'_{k}(\gamma)$, $\varphi_{k}(\gamma)$, в по (7), (8) [4] и (1)исе напряжения и прогибы в расчетных сечениях.

Отметим, что численная методика [5] быле испольвовани для ресчета рэальных конструкций (см., например, [2]) и хорожо

ж) В [5] сечения выбирались с постоянным шагом. Однако в олнак о дальнейшим развитием аппарате интегрирующих матриц, проводенным в [9], это огреничение было оннто, Подребное о выборе расчетных сечений в самом аппарате ом. [9].

себя зарекомендовала. Поскольку уравнение (21) отличается от (9) [5] лишь нагрузочными членами правой части, то это будет справедливо и для полученного здесь уравнения.

В закиючение отметим, что в матричном уравнении (21) в отличие от дифференциальных (16) в правой части отсутствуют производные от температурных членов Ψ_{κ} . В случае табличного задания температурного поля $T(\eta_i \xi_i \xi_i)$ наличие таких производных привело бы к внесению погрешностей при определении температурной "догрузки".

Литература

I,	Современные методы расчета сложных статически неопределимых
	систем. Сб. под ред. А.П.Филина, Судпромгиз, 1961.
2.	Вахитов М.Б. ИВУЗ "Авиационная техника", № I, 1967.
3.	Вахитов М.Б. ИВУЗ "Авиационная техника", ½ 1, 1958.
4.	Вахитов М.Б. ИВУЗ "Авиационная техника", № 2, 1961.
5.	Вакитов М.Б. ИВУЗ "Авиационная техника", № 2, 1962.
6.	Гейтвуд Б.Е. Температурные напряжения. ИЛ. 1959.
7.	Мелан Э., Паркус Г. Температурные напряжения, вызываемые
	стационарными температурными полями. Физматгиз, 1958.
8.	Вахитов М.Б. ИВУЗ "Авиационная техника", 1964.
9.	Вахитов М.Б. ИВУЗ "Авиационная техника", № 3, 1966.