ВОПРОСЫ ПРОЧНОСТИ ЭЛЕМЕНТОВ АВИАЦИОННЫХ КОНСТРУКЦИЙ Межвузовский сборник, вып. I, 1974

В.И.Леонов, Х.С.Хазанов

ЦИЛИНДРИЧЕСКАЯ ОБОЛОЧКА ПОД ДЕЙСТВИЕМ КРУТЯЩЕТО МОМЕНТА ОТНОСИТЕЛЬНО НОРМАЛИ И СРЕДИННОЙ ПОВЕРХНОСТИ

Расчету цилиндрической оболочки при действии сосредоточенных в локальных нагрузок посвящено большое количество работ отечественных и зарубежных авторов. Обаор этих исследовакий приведен в работах [1-3]. Тем не менее, вопрос расчета оболочки, нагруженной крутящим моментом относительно мормали и срединной поверхности, выпал из поля зрения исследователей. Известна, правда, одна работа [4], в которой задача решалась с помощью двумерного интегрального преобразования бурье. Однако использование декартовой системы координат не позволило авторам четко выделять особенности напряженного состояния вблизи точки приложения момента.

В настоящей статье исследуется напряженное состояние круговой цилиндрической оболочки с радиусом срединной поверхности R и толщиной в под действием сосредоточенных и локальных нагрувок, приводящихся к кругнщему моменту M стносительно кормали с к срединной поверхности оболочки.

θ (угол θ отсчитырается от образующей) приведено в [6] й виду

$$F(\rho, \Theta) = \sum_{\lambda \in \mathbb{Z}, u_n, n \neq 1}^{\infty} i^{\lambda} [A_n H_n^{(0)}(z) + B_n J_n(z)] [J_{n-\lambda}(z) - J_{n+\lambda}(z)] \sin \lambda \Theta, \quad (I)$$

где Z = x √2i , x = ωρ , ω = 1/√3(1-μ²) το/√R8 , A_n = ω_n + ib_n , B_n = υ_n + id_n - комплексные постоянные, v_o = характерный линейный размер₀ μ - кояффициент Пуадсона. Через J_n(Z) , H⁽¹⁾_n(Z) сбозначены функции Бесселя первого ряда и первая функция Ганкеля.

Анализ показывает, что внутренние усилия, соответствующие. решению (I), не могут уравновесить поверхностную нагрузку \mathcal{M}_{5} . Поэтому к (I) не обходимо добавить сингулярное частное решение однородного уравнения пологой цилиндрической оболочки, соответствующее действию сосредоточенного момента \mathcal{M}_{5} . Это решение получено в работе [7] и имеет вид

$$\begin{split} \mathsf{F}(p,\theta) &= -\frac{4\omega^{2}\lambda}{\pi \varepsilon \tau_{o}^{2}} \mathcal{M}_{5} \left\{ \theta + 2 \sum_{\lambda=2,k,\dots,\kappa+1}^{\infty} \sum_{k=1}^{\omega} \tilde{\psi}^{2} \mathsf{P}_{\kappa}(z) \left[\mathfrak{I}_{\kappa+\nu}(z) - \mathfrak{I}_{\kappa+\nu}(z) \right] \sin \vartheta \theta \right\}, \quad (2) \\ \mathsf{F}_{\mathrm{R}}\varepsilon = \lambda = \frac{R}{\delta}, \quad \mathsf{P}_{\kappa}(z) = \frac{\partial \mathfrak{I}_{\mu}(z)}{\partial \mu} \Big|_{\mu=\kappa} = \sum_{n=0}^{\infty} \frac{(+1)^{n} \left(\frac{z}{2}\right)^{\kappa+2n}}{n! (\kappa+n)!} \left[\vartheta n \frac{z}{2} - \psi(n+\kappa+1) \right], \\ \psi(n+\kappa+1) = \mathsf{AOT8} \mathsf{padmaveckas} \text{ производная гамма-функцам.} \end{split}$$

Исследование асимптотики поведения функции $P_{\kappa}(z)$ при $p - \infty$ ноказывает [8], что решение (2) является возрастающим на бесконечности. В связи с этим нами используется приближенный подход [3], согнасно которому оболочка заменяется вырезанной из нее изналью (в нашем случае - круглой, радиуса τ_o). Исследования [8,9]показали, что данный подход дает хорошие результаты для нащиященного состояния вблизи приложения нагрузки и что он не примении, если изс интересует жестность оболочки.

В настоящей работе задачи решанись для двух типов граничных условий на нарупном контуре панели: I) шариирное опирание, 2) месткое защемление. К паремещениям, соответствующим решению (I) м (2), при записи граничных условий нушно добавить перемещелия панели как месткого целого, которые с учетом допущений пологости имеют здесь вид

$$w = u = 0, \qquad v = -\psi L_0 \rho, \qquad (3)$$

где ψ — угол жесткого поворота изнеля, U и v - компоненти перемещения точек средниной поверхности в полярной системе коорданот (U направлено по координате v, v направлено в сторону увеличения угла θ).

При действии на панель сосредоточенного момента M 5 в решении (I) следует удержать телько возрестающую часть, т.е. положить $A_n = 0$. Но рис. I для этого случая показано респределение напряжений в нанели, полученное по результатам вычислений на ЗВМ, для вноченяя нараметра () =4. Через G_o здесь обозначена величине $G_o = \frac{M_{cb}}{R \delta^2}$. Навослъщами являются мембранные касательные напряжения

$$\Sigma_{p\theta} = T_{\theta}(p) + \sum_{\lambda=2,4,...}^{\infty} T_{\lambda}(p) \sin \lambda \theta$$
.

Онн имент в начале координат сильную особенность вида -

Psc. I.

Преобладаржий вас вблизк точке приложения изгрузик в валично С рь внеет постоянная составляющая, совпадаржая с решением аналогичной плоской задачи тесрии упругости. Это показано для ω 4 и табляца 1. Изгибине изпряжения 5 и \mathcal{O}_{θ} имерт оссбенность типа $\ln \rho$.

Если жонент (П. исродается за поколь через жесткое труглое включение радаусе Ч., то в ремежне (I) спедуат удержать как возрастающур, так и убыкымаур части. Исстоянино митогрировеими опредолногся на условия запрешаения изружаетс контура извеля и мо условия розместность перемещены извеля с жестные видочеимом при ч.-ч.. Размер виличения будее при этон карактержеского порамотром

$$\omega_{a} = \frac{1}{2} \sqrt[4]{3(1-\mu^{2})} \frac{\tau_{1}}{\sqrt{RS}}$$
 (4)

- 15 -

4-8273

- 22 -

	2	0	2	4	6
Mod ² T ^c	0,005 0,I 0,2	6366,2 15,915 3,9789	-I,6506 -I,0996 -0,43I49	0,0009 0,07872 0,10783	0,00047 0,0053

Распределение напряжений в шарнирно опертой панели по линии спан с включением для $\omega_0 = 0.96$ и $\omega = 4$ показано на рис. 2. Для этих же значений параметров распределение напряжений и нормальных перемещений вдоль коорчинаты $\bar{\rho}$ приведено на рис. 3. Через $\bar{\rho}$ эдесь обозначена величина $\bar{\rho} = \frac{\rho - \rho_1}{1 - \rho_1}$, где $\rho_1 = \frac{v_1}{L_0}$. Наибольших аначений напряжения достигают на линии спая панели с включением. Зависимость максимальных напряжений от радиуса хостного включением. Зависимость максимальных напряжений от радиуса хостного включением. показана на рис. 4. Эквивалентные напряжения G_3 вычислялись по теории прочности энергии формоизменения. По мере уменьшения размера включения касательные напряжения $\mathcal{T}_{\rho 0}^c$ весьма стремительно иозрастают. Изгибные напряжения растут несколько медленнее. Однако доля изгибных напряжений при ω_0 -0.15 составляет более 10% от исличины касательных напряжений $\mathcal{T}_{\rho 0}^c$ и увеличивается по мере рюста ω_0 . Таким образом, учет изгибных напряжений в диапазоне $\omega_0 > 0,15$ является обязательным.

Зависимость максимальных эквивалентных напряжений от наружного радиуса панели °С. (при постоянных R и 8 это эквивалентпо С) дана в таблице 2. Величина в числителе соответствует паримрному опиранию наружного контура панели, в энаменателе - жесткой заделке. Из приведенных результатов видно, что радиус панели пезначительно влияет на максимальные напряжения. Так же слабо злияет и способ закрепления наружного контура панели при достатечно больших значениях СС .

Изменение максимальных напряжений в зависимости от радиуса кривизны срединной поверхности панели R, что согласно (4) при постоянных v_4 в δ эквивалентно ω_o , для $\frac{v_o}{v_4}$ =5 представлено на рис. 5. Наиболее сильно изменение кривизны срединпой поверхности панели сказывается на изгибных напряжениях, которие резко возрастают по мере се увеличения.

					A	
	wo	I	2	3	4	5
<u>G</u> Go	0,1	<u>11.42</u> II,40	<u>II.46</u> II.44	<u>II.47</u> II.47	<u>II.48</u> II.48	Pig
	0,4	<u>0,7172</u> 0,7153 .	0.7416 0.7347	0.7549 0.7517	0,7591 0,7582	-
	0,8	-	0,1987 0,2208	0.2083 0.1902	0,2159 0,2071	<u>0,2218</u> 0,2208
	I,2	ene -	0.0840I 0.08166	0 <u>09727</u> 0009539	0,1055 0,1016	0,1077 0,1068

J r o **p s r** y **p s**

- I. Ангалко Ю.П. В сб. "Исследования по теорие пластие и оболочен", вып. 4., Казань, 1966.
- Даревский В.М. В сб. "Труды УІ Всесоюзной конференции по теории оболочек и пластинок", "Наука", 1966.
- Чернышев Г.И. О контактных задачах в теорим оболочек. Труды УП Всесованой конференции по теории оболочек и пластинок "Наука", 1970.
- 4. Mizoquchi K., Shirahawa K. Bulletir of the JSME, vol. 15, no 82, 1972.
- 5. Лурье А.И. Статика топкостенных упругих оболочек. ОГИБ. 1947.
- 6. Хазанов Х.С. Труды КуАИ, вып. 29, 1967.
- 7. Савольев Л.М., Хезанов Х.С. Труды КуАК, выл. 48, 1971.
- 8. Леонов В.И.Хезанов Х.С. Труды КуАИ, вып. 63, 1972.
- 9. Леонов В.И., Хазанов Х.С. Труды КуАИ, вып. 66, 1973.