А. С. НАТАЛЕВИЧ

ПАРЦИАЛЬНЫЕ ВОЗДУШНЫЕ МИКРОТУРБИНЫ

В статье рассматриваются одноступенчатые парциальные воздущные микротурбины (турбины мощностью до 4 квт), применяемые в настоящее время в ряде областей техники, но еще мало изученные. Приведенные в статье опытные данные взяты из работы [1] и других исследований, проведенных на специальной тормозной установке [2] в термодинамической лаборатории КуАИ.

РАБОЧИЙ ПРОЦЕСС В МИКРОТУРБИНАХ

На фиг. 1 представлена схема осевой и центростремительной микротурбии. Микротурбины имеют малую мощность и расход газа, поэтому им свойственны дополнительные потери энергии, свя-

защые с парциальностью. Хотя в микротурбинах наружный диаметр колеса не превышает 120 мм, а площадь критического сечения одного сопла составляет всего 2-5 мм², расход газа так мал, что попытка сделать их со парциальности степенью e = 1приводит к очень малому сечению сопел, что связано с большими потерями в пограничном слое. Средний удельный расход воздуха в воздушных микротурбинах

Фиг. 1. Осевая и центростремительная микротурбины.

при температурс воздуха перед турбиной $T_0^* = 300^{\circ}$ К составляет примерно 1,3 $\frac{H \cdot M^3}{MaH}$.

Характерной особенностью течения вязкого газа в микротурбинах является сильное влияние пограничного слоя в результате соизмеримости толщины его с размерами поперечного сечения каналов. Поэтому в микрорешетках вторичные потери могут превосходить профильные. В опытах с осевыми воздушными парциальными микротурбинами $D_{\rm cp} = 60$ мм и $D_{\rm .p} = 108$ мм замена одного профиля другим, существенно отличным от него, вызвала изменение к. п. д. на $3 \div 4\%$, а применение бандажа, снижающего вторичные потери, повысило к. п. д. на 12%. Учитывая распространение пограничного слоя на все ядро потока и отсутствие участков с чисто профильными потерями в микрорешетках, а также большие трудности исследования их при помощи зондов статического и полного давления, в микротурбинах обычно не разделяют потери на профильные и вторичные, а оценивают при помощи коэффициентов ϕ и ϕ сум-

Фиг. 2. Осевая воздушная турбина ($\rho = 0$). Сопла прямоугольные $f_{\rm кp} = 1,55 = 1,80$; Колесо $D_{\rm cp} =$ = 40 мм; $\alpha_{1\rm K} = 18^\circ$; $h_{\pi} = 2,2$ мм, без бандажа. $M_{1f} = 1,36$; $R_{eD} =$ $= 2,15 \times 10^6$.

марные потери в сопловых и рабочих решетках [3]. Хотя такая методика не раскрывает физической сущности отдельных видов потерь, она проста в расчетах и опытах. В итоге в микротурбинах $\varphi = = 0.95 \div 0.85$, а $\psi = 0.85 \div 0.70$, т. е. значительно ниже, чем в турбинах с длинными лопатками.

Обороты микротурбины часто предопределены конструкцией агрегата, в котором она применяется в качестве двигателя, и изменяются от 20 до 100 тыс. oб/мин. Но все же скорость U, ввиду малых размеров диаметра колеса, в микротурбинах не превышает 150 *м/сек*. В результате даже в воздушных микротурбинах, работающих на низкой температуре $T_0^* = 300^\circ K$ и давлении $P_0^* =$ = 5 бар на входе, критерий $\frac{U}{C_{ex}}$

(здесь Сал — адиабатная не превышает 0,2 скорость, обычно теплоперенаду). Так полному соответствующая 410 лаже учетом факта снижения при уменьшении парциальности є. $\frac{U}{C_{aa}} < \left(\frac{U}{C_{aa}}\right)$ как видно из фиг. 2, микротурбины работают при т. е. на левой ветви характеристики. В результате в микротурбинах при <u>U</u> <0,2 основными являются потери с выходной скоростью-Например, как видно из таблицы 1, соответствующей активной осевой воздушной микротурбине с параметрами: P₀* = 4,9 dap: 4

Таблица 1

 $T_{u}^{\mu} = 288^{\circ} K; P_{2} = 1,013 \, \delta a p.;$ $D_{cp} = 50 \, \text{мм}; \frac{U_{cp}}{C_{a\pi}} = 0,1; \varepsilon =$ 1.0; $\sigma_{1\kappa} = \beta_{2\kappa} = 20^{\circ}$ потери с выходной скоростью $\frac{C_{2}^{3}}{2g}$ при $\varphi = 0,92$ и $\psi = 0,80$ составляют 33% от располаставляют 33% от располастаемой энергии $\frac{C_{a\pi}^{2}}{2d}$, в то $\frac{\Delta C_{2}^{2}}{C_{a\pi}^{2}} =$ время как потери в соплах $\frac{\Delta C_{2}^{2}}{C_{a\pi}^{2}}$ составляют 15%, а потери на колесе $\frac{\Delta W_{2}^{3}}{C_{a\pi}^{2}}$ составляют 25%. При увеличепии $\frac{U}{C_{a\pi}}$ влияние φ и ψ на к. п. д. шается влияние потерь с выходной потери в соплах и колесе становято случаях (например, в турбодетандер

	$\phi = 0.92 \\ \phi = 0.80$	$\substack{\alpha = 1, 0 \\ \varphi = 0, 80}$	c = 0.92 d = 1.0
$\frac{\Delta C_{1^{2}}}{C_{a, \pi}^{2}} = \frac{C_{1^{2}}/\varphi_{2} - C_{1^{2}}}{e_{a, \pi}^{2}}$	0,15	0,0	0.15
$\frac{\Delta C_2^2}{C_{3,1}^2} = \frac{w_2^2/\psi^2 - w_2^2}{C_{3,1}^2}$	0,25	0,30	0.0
C_{2}^{2}/C_{ag}^{2}	0,33	0,40	0,54
η_{tt}	0.27	0,30	0,31
$\Delta \gamma_{tu}/\gamma_{tu}$	-0,0	0,111	0,149

вляют 25%. При увеличеши $\frac{U}{C_{an}}$ влияние φ и ψ на к. п. д. возрастает, так как уменьшается влияние потерь с выходной скоростью, и при $\left(\frac{U}{C_{an}}\right)_{our}$ потери в соплах и колесе становятся основными. В некоторых случаях (например, в турбодетандерных холодильных установках со специальными подпипниками, допускающими обороты сибще 100 тыс. oб/мин.) обороты турбины могут быть выбраны из условия получения $\left(\frac{U}{C_{an}}\right)_{our}$.

В таблице 1 приведены также рассчитанные по нижеизложенной методике изменения окружного к. п. д. η_u , вызванные изменение о ϕ и ψ в сравнении с $\phi = 1$ м $\psi = 1$. Как видно из таблицы 1, при низких значениях $\frac{U}{C_{aa}}$, когда велико влияние потерь с выходной скоростью, уменьшение потерь в соплах, т. е. увеличение ϕ , вызывает лезначительное увеличение к. п. д., так как одновременно с ростом кинетической энергии $\frac{C_1^2}{2g}$ на выходе из сопел растут также потери на колесе и потери с выходной скоростью. То же имеет место и при увеличение ψ , однако увеличение ψ вызывает примерно вдвое меньшее увеличение к. п. д., чем такое же увеличение ϕ . Так как при одинаковых $\frac{U}{C_{aa}}$, $\hat{\tau}$, ψ относительное изменение к. п. д.

 $\frac{\Delta \eta_n}{\eta_n}$ не зависит от парциальности ε , то данные таблицы 1 справедливы и для турбин $\varepsilon < 1$. Слабое влияние изменения φ и ψ на к. п. д. при $\frac{U}{C_{aa}} < 0,2$ и в центростремительной парциальной микротурбине. Ввиду больших потерь с выходной скоростью, в микротурбинах паблюдается большая разница между адиабатным к. п. д. η_{aa} , рассчитанным по статическому давлению P_2 за турбиной, и к. п. д. η_{aa}^* , рассчитанным по давлению торможения. P_2^* за турбиной.

бины. Сопла сужающиеся, прямоугольного сечения на выходе. Характерным является быстрое нарастание влияния парци-

альности на к. п. д. при $\approx < 0,3.$ € изменением - изменяются вентиляционные потери, ПОэтому графики зависимости U $\tau_{iz} = f(z)$ для различных Can Uсовпадают - большим не Сал соответствуют меньшие значения ус.

На фиг. 4 приведены графики зависимости $\eta_{aa} = f\left(\frac{U_{cp}}{C_{aa}}\right)$ осевой воздушной парциальной микротурбины. Как видно из графиков, при $\frac{U_{cp}}{C_{aa}} < 0.2$, несмотря на изменение M_{1t} , R_{cD} и соответствующих им φ и ϕ , к. п. д. при данном $\frac{U_{cp}}{C_{aa}}$ изменяется К. п. д. $\eta_{a\pi}^*$ может вдвое превышать $\eta_{a\mu}$.

Влияние парциальности з на к. п. д. микротурбины удобно оценивать при помощи относи-Чал. в тельного к. п. д. ηε Tan. e=1 равного отношению к. п. Д. парциальной γад, ε турбины К. П. Д. Тад. = 1 ТОЙ же турбины, имеющей нарциальность прочих $\varepsilon = 1$ при равных нараметрах. Относительный к. п. д. Ме определяется экспериментально для каждого типа турбины. На фиг. 3. приведены графики зависимости $\eta_{\varepsilon} = f(\varepsilon)$ осевой воздушной микротур-

Фиг. 4. Осевая воздушная турбина $(\rho = 0; \epsilon = 0, 2)$ Сопла круглые, $d_{\rm Kp} = 1, 6 \, \text{мм}; \, \alpha_{\rm IK} = 1 \, 8^\circ.$ Колесо $D_{\rm CD} = 60 \, \text{мм}; \, h_A = 2 \, \text{мм}, \, {\rm c} \, {\rm бандажом}.$

6

позначительно. Это объясияется тем, что при данных условиях основ ными потерями являются потери с выходной скоростью, относитель ная величина которой $\frac{C_2^2}{C_{aa}^2}$ (а. значит, и к. п. д.) постоянна при const. В другом случае с осевой воздущной турбиной, имевшей $D_{\rm cp} = 108 \ \text{MM}; \ \epsilon = 0.05; \ \frac{p_{\rm u}}{p_{\rm u}} = 6.5; \ \frac{U_{\rm cp}}{C} = 0.1, \ \text{замена} \ \text{дозвуко-}$

вого профиля лопаток колеса сверхзвуковым привела к изменению к. п. д. только на 3÷4%, изменение же густоты решетки колеса на 30% практически не повлияло на к. п. д. турбины. Поскольку в парциальных микротурбинах нельзя поддержать значительный переная давления на колесе, то их делают активными.

В реактивных микротурбинах снижение потерь в соплах комненспруется повышением потерь в зазоре. Учитывая же слабое влилинс q чи ψ на к. п. д. при $\frac{U}{C_{aa}} < 0,2$, можно считать φ и ψ активной и реактливной турбин одинаковыми. Тогда предночтение следует отнать активной турбине, как имеющей более высокий к. п. д. Например, расчетное сравнение активной и реактивной оссвой воздушной микротурбины с параметрами: $P_0^* = 4.9$ бар.; $T_0^* = 288^\circ K$; $P_2 =$

1,013 fap ; $\frac{U_{cp}}{C_{cr}} = 0,2$; $\varphi = 0,92$; $\psi = 0,80$; z = 1,0; $D_{cp} = 50$ MM

показало превышение (дад) = , над (дад) = 0,5 14%.

И случае центростремительной микротурбины с теми же нараметрами эта разница еще большая и составляет, примерно, 20%. К тому же, у активных турбин меньшее осевое усилие.

В парциальных микротурбинах из-за высоких значений отношения диаметра колеса к расходу газа, при повышенных $\frac{U}{C_{rec}}$ значительное влияние на к. п. д. оказывает дисковое трение. Потеря на трение гладкого диска, являющаяся главной частью общих потерь на трение колеса, в воздушных микротурбинах может составлять по 20% от располагаемой энергии.

Подытоживая вышесказанное о потерях в микротурбинах, слеаует отметить, что в зависимости от величины $\frac{U}{C_{con}}$ и є к. п. д. паршвальных микротурбии изменяется в диапазоне 0,2-0,6.

Существенной особенностью парциальных микротурбин является простота увеличения мощности путем увеличения числа сопел. При этом профилировка и размеры колеса не изменяются, а к. п. д. позрастает из-за увеличения парциальности. 7

методы повышения экономичности микротурбин

Очевидный метод повышения к. п. д. микротурбин — это переход на режим $\left(\frac{U}{C_{aa}}\right)_{ont}$ путем увеличения U или снижения C_{aa} . Однако увеличение U за счет оборотов в большинстве случаев невозможно из-за отсутствия необходимых подшипников, хотя из условия прочности колеса турбины возможно увеличение оборотов по крайней мере в два раза. В тех же случаях, где обороты турбины не ограничены условиями конструкции (например, в установках с воздушными подшипниками), увеличение оборотов является эффективным средством повышения к. п. д.

В большинстве случаев аккумулятор сжатого газа, из которого газ поступает в микротурбину, имеет давление в несколько раз большее, чем необходимое для работы одноступенчатой парциальной микротурбипы на режиме $\left(\frac{R}{C_{aa}}\right)_{out}$. Снижение давления P_0^* перед турбиной путем дросселирования газа с целью слижения C_{aa} хотя и вызывает увеличение к.п. д. турбины, однако из-за потери пол-

ного давления при дросселировании нерационально.

Потери на дросселирование в некоторых случая х частично можно компенсировать, применив на входе в турбину ээкектор. Из опытов с воздушными микроэжекторами следует, что коэффициент эжекции при снижении давления воздуха с 6 до 3 *бар* составляет 0,15÷0,20.

Значительного повышения к. п. д. микротурбин посредством увеличения $\frac{U}{C_{aa}}$ до $\left(\frac{U}{C_{aa}}\right)_{our}$, как и в больших турбинах, можно ожидать

от применения двухступенчатой турбины. Однако из-за повышенных потерь в пограничном слое и в зазорах из-за утечки газа применение двух ступеней в микротурбинах даст значительно меньший эффект, чем в больших турбинах. Еще меньший эф фект от применения двух ступеней можно ожидать в случае парциальной микротурбины, так как из-за растекания струи газа на выходе из парциального соплового аппарата и вихревых течений в колесе первой ступени, на входе во вторую ступень повышается глотеря полного давления. В микротурбинах наилучшего эффекта от применения второй ступени можно ожидать в осевой турбине. В радиальной двухступенчатой турбине при ограниченных диамстральных габаритах одна из ступеней малоэффективна, а в случае центростремительно-центробежной двухступенчатой микротурбины при повороте потока между ступенями на 180° неизбежны потерна полного давления.

Аналогично паровым турбинам в микротурбина ж малой парциальности вместо второй ступени возможно прим енение одновенечной турбины с двумя ступенями скорости.

Значительное увеличение к. п. д. осевых микроту рбин (до 12%) дает применение бандажа, при этом эффективн ость примене-

8

ния бандажа как средства, снижающего вторичные потери. возрастает с увеличением $\frac{U}{C}$.

К. п. д. любого типа микротурбины может быть увеличен путем улучшения аэродинамических свойств сопел и решетки колеса, т. е. уполичением коэффициентов φ и ψ . При этом степень влияния φ и ψ пак. п. д. турбины усиливается по мере увеличения ε и $\frac{U}{C_{a,a}}$.

Что же касается путей повышения фиф, то в принципе, они такие же, как и в больших газовых турбинах, однако в микрорешетках главпыми являются вторичные потери.

Небольшое увеличение к. п. д. (до 5%) дает установка диафрагмы за колесом турбины. В диафрагме имеется отверстие протяженностью примерно 1,5 дуги, занятой соплами. Диафрагма уменьшает вентиляционные потери.

Наконец в радиальных микротурбинах некоторый эффект даст применение закрытых колес, так как при этом снижается дисковое трение в сравнении с полуоткрытыми колесами.

МЕТОДИКА РАСЧЕТА ОДНОСТУПЕНЧАТЫХ МИКРОТУРБИН

Методика расчета газовых парциальных микротурбин имеет следующие особенности.

I. Сначала производится газодинамической расчет микротурбины и пмеющей те же исходные параметры газа и геометрию решеток, что и рассчитываемая парциальная турбина. При этом испольпуются опытные зависимости

$$\varphi = \varphi(M_{1t}; R_{eD}); \quad \varphi = \phi\left(M_{1t}; \frac{U}{C_{at}}; R_{eD}\right)$$

тля данного типа турбины при $\varepsilon = 1$. В микротурбинах коэффиниент φ оценивает суммарные (профильные и вторичные) потери в сопловой решетке, а коэффициент ψ суммарные (профильные, вторичные, потери в зазоре и утечки) потери в решетке колсса тур-

2. Влияние потерь с парциальностью оценивается относительным к. п. д. $\overline{\eta}_{\varepsilon}$, определяемым экспериментально для каждого тина гурбниы. Относительный к. п. д. $\overline{\eta}_{\varepsilon}$ учитывает также и измененис φ и ψ в парциальной турбине сравнительно с турбиной $\varepsilon = 1$.

3. Методика пригодна для расчета осевых и радиальных микротурбии.

Предварительный расчет

Пель предварительного расчета — определение критериев M_{1t} ; R_{eD} , используемых при выборе коэффициентов φ , ψ , μ (коэффициент расхода сопел), определение наилучшего сочетания парициальности є и площади критического сечения сопла $f_{\rm KP}$, опречеление относительного к. п. д. η_z . Обычно расчет активных парциальных микротурбии производится при следующих исходных данных: P_0^* ; T_0^* ; P_2 ; D_{cp} (или D_1 ; D_2 — паружный и внутренний диаметры колеса радиальной турбины); $\sigma_{1\kappa}^\circ$; $\overline{f}_{2\kappa}^\circ$; \overline{t} ; n; Ne.

Критерий M_{1l} определяется (при $\rho = 0$) по функции $\pi_{an} = \frac{P_a}{P_0^{**}}$. Скорость C_{an} критерия $\frac{U}{C_{an}}$ по формуле $C_{an} = \lambda_{an} \sqrt{\frac{2k}{k+1}} gRT_0^{*}$, критерий R_{eD} по формуле $R_{eD} = \frac{W_{1 an} D_{co} \cdot \rho_{1 an}}{P_{an}}$. Скорость $W_{1 an} = -\frac{V}{(c_{an} \cdot \sin \alpha_1)^2} + (c_{an} \cdot \cos \alpha_1 - u)^2$, плот-

Фиг. 5. Центростремительная воздушная турбина. $D_1 = 50 \text{ м.м.; } M_{1t} = 1,685;$ $\frac{U_1}{C_{\text{в.л.}}} = 0,2; R_{cD_1} = 3,6 \times 10^6;$ $(t_{\text{кр}} \cdot z) = 1,5.$

 $\begin{array}{c} p_{1} & p_{1} \\ \hline & p_{1} \\ p_{1} \\ a_{A} \\ \hline & g_{R} \\ \hline & T_{0}^{*} \\ \hline & \varepsilon_{a_{A}} \\ \hline & F_{0} \\ \hline &$

При пеизменных исходных параметрах $L_{aa} = \frac{C_{aa}^2}{2a} = \text{const}$, а расход газа G пропорционален суммарной площади критических сечений сопел, или произведению $f_{\kappa p} \cdot \varepsilon$. Тогда мощность турбины $Ne = \frac{G \cdot L_{aa} \cdot \eta_{aa}}{102}$ пропорциональна произведению $(f_{\kappa p} \cdot \varepsilon) \eta_{aa}$. Располагая опытными графиками $\eta_{aa} = f(\varepsilon \cdot f_{\kappa p}; f_{\kappa p})$, как на фиг. 5, и перемещаясь по пунктирной линии, проведенной через точки $(\eta_{aa})_{max}$, можно найти то сочетание $f_{\kappa p}$ и ε , которое при заданной мощности Ne соответствует $(\eta_{aa})_{max}$.

Газодинамический расчет

Цель газодинамического расчета микротурбины состоит в определении к. п. д. турбины и геометрических параметров соплового аппарата и колеса, обеспечивающих получение заданной мощности.

Газодинамический расчет производится с использованием опытных коэффициентов φ ; ψ ; μ ; $\overline{\eta}_{\varepsilon}$, найденных по критериям M_{1t} ; $\frac{U}{C_{aa}}$; R_{eD} ; ε в предварительном расчете. При этом соблюдаются принципы подобия газовых потоков, состоящие в том, что коэффициенты φ ; ψ ; μ ; η_{ia} ; $\overline{\eta}_{\varepsilon}$, опытной и рассчитываемой турбин одинаковы в случае геометрического подобия их и постоянства критериев подобия M_{1t} ; $\frac{U}{C_{aa}}$; R_{eD} . Однако постоянство всех критериев подобия в большинстве случаев осуществить невозможно, в ре-10

оклытате неизбежно некоторое различие значений опытных и расчетных нараметров, которое по мере накопления опытных данных но микротурбинам будет уменьшаться.

Параметры потока на выходе из соплового аппарата

- 1. Статическое давление $P_1 = P_2 + 0,1 \div 0,3$ бар.
- 2. Газодинамические функции

 $\pi_{1:0,1} = \frac{P_1}{P_0^{(*)}}; \ \lambda_{1:0,1}; \ \lambda_1 = \tilde{r} \cdot \lambda_{1:0,2}; \ \pi_1; \ \tau_1; \ \varepsilon_1; \ q_1.$

3. Коэффициент восстановления давления торможения $\sigma_c = \frac{\pi_{1 \text{ ал}}}{\pi_1}$.

Давление торможения P₁* = P₀*·σ_c.

5. Критическая скорость $a_{\text{кр 1}} = \sqrt{\frac{2k}{k+1}} gRT_1^*$. Здесъ $T_1^* = T_0^*$.

6. Паправление потока $\alpha^{0}_{1} \equiv \alpha^{\circ}_{1\kappa} - \delta^{\circ}$, где δ° – отклонение потока в косом срезе.

i. Скорость газа и ее окружная и меридиональная составляюшие $c_1 = a_{\text{кр.1}} \cdot \lambda_1$; $c_{1,\text{R}} = c_1 \cdot \cos \alpha_1$; $c_{1m} = c_1 \cdot \sin \alpha_1$.

8. Удельный вес и статическая температура газа $\gamma_1^* = \frac{P_1^*}{RT_0^*};$

Параметры потока на входе в колесо

9. Окружная скорость колеса (на $D_{\rm cp}$ в случае осевой и на D_1 и случае радиальной турбины) $U = \frac{\pi D \cdot n}{60}$.

10. Относительная скорость $w_1 = \sqrt{-C_{1m}^2 + (C_{1m} - U)^2}$.

11. Паправление потока $\beta_1^\circ = \operatorname{arc} \operatorname{tg} \frac{C_{1m}}{C_{1m} - U}$.

12. Температура торможения $T_{\omega_1}^* = T_0^* - \frac{C_1^2 - w_1^2}{\frac{k}{k-1}R \cdot 2g}$.

13. Критическая скорость $a_{\kappa p, w1} = V - \frac{2k}{k+1} gRT_{w1}$. 11. Газодинамические функции и давление торможения

$$\lambda_{w1} = \frac{w_1}{-a_{kp,w1}}; \quad \pi_{w1}; \quad P_{w1}^* = \frac{P_1}{\pi_{w1}}.$$

Параметры потока на выходе из колеса 15. Гемпература торможения $T_{w2}^* = T_{w1}^* = \frac{U_1^2 - U_2^2}{\frac{k}{k-1}R\cdot 2g}$. В случае осевой турбины $U_2 = U_1; T_{w2}^* = T_{w1}^*$.

16. Давление торможения идеального колеса $P^*_{w_{2,a,a}} = P^*_{w_{1}} \cdot \pi^*_{w_{2}}$ где π_w^* определяется по функции $\tau_w^* = \frac{T_{w^2}^*}{T^*}$. В случае осевой турбины $P^*_{w_{2aa}} = P^*_{w_{1}}$. 17. Газодинамические функции $\pi_{w^2a_A} = \frac{P_2}{P^*}; \lambda_{w^2a_A};$ $\lambda_{w2} = \psi \lambda_{w2} a_{A}; \ \pi_{w2}; \ \pi_{w2}; \ \Xi_{w2}.$ 18. Давление торможения $P_{w2}^* = \frac{P_2}{\pi_2}$. 19. Критическая скорость $a_{\text{кр. w2}} = \sqrt{\frac{2k}{k + 1}} gRT_{\text{w2}}^*$. 20. Относительная скорость газа и ее окружная и меридиональная составляющая (принято $\beta_2 = \beta_{2k}$). $w_2 \equiv a_{\text{Kp. }w2} \cdot \lambda_{w2}; w_{2m} \equiv w_2 \cdot \sin \beta_2; w_{2u} \equiv w_2 \cdot \cos \beta_2.$ 21. Абсолютная скорость газа $c_2 = \sqrt{\omega_{2m}^2 + (\omega_{2u} - u)^2}$. 22. Абсолютная температура торможения $T_2^* = T_{\omega 2}^* - \frac{w_2^2 - c_2^2}{k}$. 23. Удельный вес и статическая температура газа $\gamma_{w2}^* = \frac{P_{w2}^*}{RT^*}; \ \gamma_2 = \gamma_{w2}^* \cdot z_{w2}; \ T_2 = T_{w2}^* \cdot z_{w2}.$ Параметры турбины в целом

Снижение температуры торможения на колесе турбинь имеющей парциальность ε = 1. (ΔT^{*}_u)_{ε=1} = T^{*}₀ - T^{*}₂.
Окружной к.п. д. турбины, имеющей ε = 1.

$$(\gamma_{\mu})_{\epsilon=1} = \frac{(\Delta T_{\mu}^{*})_{\epsilon=1}}{T_{0}^{*}[1-\tau_{a\pi}]}.$$

26. Расход газа (сопла сверхзвуковые)

$$G = m \cdot F_{\mathrm{кр}} \cdot \frac{P_0^*}{\sqrt{T_0^*}} \cdot \mu$$
, где $m = \sqrt{\frac{g \cdot k}{R} \left(\frac{2}{k+1}\right)^{\kappa+1}}$

Суммарная площадь критических сечений соплового аппарата

$$F_{\mathrm{кp}} \equiv f_{\mathrm{кp}} \cdot z_{\mathrm{c}},$$
 где $z_{\mathrm{c}} = \pi \; rac{D_{\mathrm{cp}}}{t_{\mathrm{c}}} \, \mathrm{s}.$

Здесь t_{c} — шаг сопловой решетки на диаметре $D_{cp'}$. Площадь сечения сопла на выходе $f_1 = f_{\kappa p}/q_1$. ^от. Мощность трения гладкого диска (с учетом трения по пориметру диска толщиной *B*).

$$N_f = \beta_f \cdot 10^{-6} u_{\rm fl}^3 D_{\rm fl}^2 \gamma_1 \left(1 + 5 \frac{B}{D_{\rm fl}} \right) \, \kappa_{BIII}.$$

влесь D_n и u_n — наружный диаметр колеса и соответствующая оку окружная скорость. Коэффициент $\beta_f = 1, 6$.

28. Температурный перепад, соответствующий мощности N_f,

$$\Delta T_f = \frac{102 \cdot N_f}{\frac{k}{k-1} R \cdot G} \; .$$

Оближение температуры торможения газа в парциальной туроние.

$$\Delta T_{\mathrm{e}}^* = \overline{\eta}_{\varepsilon} \left[(\Delta T_u^*)_{\varepsilon \equiv 1} - \Delta T_f \cdot \varepsilon \right].$$

10 Аднабатный к. п. д. турбины $\eta_{a\mu} = -\frac{\Delta T_e^*}{T_0^* (1 - \tau_{a\mu})}$, где функ-

11. Эффективная мощность турбины (проверка)

$$Ne = \frac{1}{102} \cdot \frac{k}{k-1} R \cdot \Delta Te^* \cdot G \ \kappa Bm.$$

В случае различия Ne расчетной и заданной следует изменить расход G и проделать повторный расчет, начиная с пункта 26.

32. Геометрические параметры решетки колеса. Высота лопаток на входе $h_1 = h_c + 0.3 \div 0.7$ мм. Высота лопаток на выходе $h_2 = \frac{G \cdot k_2}{\pi D_2 \cdot \sin \beta_{2k} \cdot z \cdot \gamma_2 \cdot w_2}$.

Величним $k_2 = \frac{t_2}{t_2 - \Delta t} = 1,05 \div 1,30$ и $\overline{t} = t/b = 0,60 - 0,70$ для рассчитываемой турбины применяются такими же, как и для по-

Рассмотренная методика газодинамического расчета микрогурбии, базирующаяся на опытные коэффициенты суммарных потерь ф; ф: де характерна своей простотой.

Методика, основанная на опытных данных по каждому виду потерь, значительно сложнее и требует проведения большого количества опытов.

Профилирование решеток микротурбин аналогично профилировношо решеток активных газовых турбин с короткими лопатками, не имеет ряд специфических особенностей и подлежит самостоятерлому рассмотрению. 1. *Н. Т. Тихонов.* Экспериментальное исследование парциальности и высоты лопаток на работу воздушной центростремительной микротурбины, Известия высших учебных заведений, серия «Авиационная техника», № 4, 1963.

2. В. М. Дорофеев, А. С. Наталевич, Н. Т. Тихонов. Магнитовоздушный тормоз для испытания микротурбин, Известия высших учебных заведений, серич «Авиациошиал техника», № 4, 1962.

3. О. Н. Емин. Выбор параметров и расчет осевых активных турбин для привода агрегатов. Оборонгиз, 1962.