А. С. НАТАЛЕВИЧ

ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ ВОЗДУШНОГО МИКРОЭЖЕКТОРА*

Воздушные микроэжекторы — это эжекторы с малыми размерами критического сечения сопла $d_{\rm kp} = 2-5$ мм и камеры смещения $D_{\rm k} = 4-10$ мм. Воздушные микроэжекторы могут найти применение на установках, работающих на сжатом воздухе с давление в 4-6 ата и выше (пневмоинструмент с турбинными двигателями вспомогательные приводы, трубодетандерные и вихревые холо дильные аппараты, испытательные стенды). Вообще микроэжекторы, как и большие эжекторы, целесообразны в том случае, когди в основной установке имеется неиспользуемое избыточное давление, с помощью которого в эжекторе можно получить дополнительное количество воздуха. Кроме того, в случае применения эжектора снижается давление воздуха в расположенной за эжектора основной установке (например, турбине), в результате — уменьшаются утечки воздуха и уровень шума, что весьма важно.

Рабочий процесс и методика расчета микроэжектора такие жи как и больших эжекторов [1]. Однако, ввиду повышенного влияни пограничного слоя при малых размерах сопла и камеры смешени» характеристики микроэжектора отличаются от характеристик бол ших эжекторов.

Целью настоящей работы является экспериментальное опред ление характеристик воздушного микроэжектора.

ЭКСПЕРИМЕНТАЛЬНАЯ УСТАНОВКА

На фиг. 1 представлена схема установки для испытания во душных микроэжекторов, а также схема измерений.

Сжатый воздух G_1 из сети через входной вентиль B_1 и нормал ную диафрагму D_1 поступает в сопло 1. Эжектируемый воздух (

^{*} В проведении экспериментов принимали участие студенты пятого кур Бурмистров Г. и Пешков В.

подсасывается в камеру смешения 2-3 из атмосферы через четыри отверстия. Камера смешения имеет на выходе диффузор 3-4. Посли смешения воздух $G_3 = G_1 + G_2$, пройдя через нормальную диафра му D_2 и выходной вентиль B_2 , выбрасывается в атмосферу. Вентиль B_1 служит для изменения давления P_0^* на входе в сопло и для изменения расхода G₁. Вентиль B₂ служит для изменения противодавления P_4^* за эжектором. Расход G_1 измеряется нормальной диаф рагмой D_1 с диаметром отверстия $d_1 = 9$ мм, смонтированной в трубе с внутренним диаметром $D_{1\tau p} = 52 \, \text{мм}$, расход G_3 измеряетс нормальной диафрагмой с диаметром отверстия $d_2 = 12 \, \text{мм}$, смонтированной в трубе с внутренним диаметром $D_{2rp} = 27,5$ мм. Полног давление Ром* на входе в сопло измеряется пружинным манометром, а температура to*- ртутным термометром. Полное давление P_{4м}* на выходе из диффузора сеч. 4-4, ввиду значительной неравномерности потока, измеряется в нескольких точках трубкой полного напора, соединенной с образцовым манометром и смонтированной на координатнике К, позволяющем перемещать TDYGKY вдоль радиуса сечения 4—4. Температура t2* перед диафрагмой D не измерялась; в расчетах принималось $t_2^* = t_0^*$, так как разниця между ними не превышала 2°. Таким образом, испытывались микроэжекторы с одинаковой температурой эжектирующего и эжектируемого воздуха $t_0^* \approx t_2^* = 15 - 20^{\circ}$ С, так что $\Theta = \frac{T_0^*}{T_2^*} = 1$. Перепади давления ΔP_g и ΔP_{g2} на нормальных диафрагмах D_1 и D_2 определялись дифференциальными водяными пьезометрами. Перепады давления ΔP_1 и ΔP_2 , используемые при вычислении удельного веса воздуха перед диафрагмой, измерялись дифференциальными пьезометрами. Расход воздуха G₁ определялся по формуле

$$G_{1} = \frac{1}{60} \mathbf{1}, 252 \cdot \alpha_{1} \cdot d_{1}^{2} \, \sqrt{\Delta P_{g1} \cdot \gamma_{g1}} \, \frac{\kappa^{2}}{M \, u \mu} \, ,$$

где $\alpha_1 = 0.612$ — коэффициент расхода диафрагмы D_1 ; $d_1 = 0.9 \ cm$ — диаметр отверстия диафрагмы D_1 .

Расход воздуха $G_3 = G_1 + G_2$ определялся по формуле

$$G_3 = \frac{1}{60} \mathbf{1}, 252 \cdot \alpha_2 d_2^2 \, \sqrt{\Delta P_{g^2} \cdot \gamma_{g^2}} \, \frac{\kappa_2}{_{\mathcal{M}\mathcal{UH}}} \, ,$$

где $\sigma_2 = 0,630$ — коэффициент расхода диафрагмы D_2 ; $d_2 = 1,2 \ cm$ — диаметр отверстия диафрагмы D_2 .

Среднее полное давление $(P_{4}^{*})_{cp}$ на выходе из диффузора определялось по результатам измерения этого давления в пяти точках радиуса r_{4} с осреднением по площади сечения 4-4.

На фиг. 2 дан общий вид узла эжектора. Сменное сопло 1 крепится на резьбе в корпусе 2. В корпус по скользящей посадке устанавливается сменная втулка 3, являющаяся камерой смешения. На хвостовик корпуса на резьбе крепатся сменный диффузор 4 с координатником и трубкой полного напора 5. Сопло, корпус и втулка сделаны из бронзы, а диффузор — из алюминиевого сплава. 142 Исследовались сужающиеся круглые сопла с диаметром крипического сечения $d_{\kappa p} = 1,83$; 2,2; 2,9; 3,5 мм. Четвертый вариант гопла $d_{\kappa p} = 3,5$ мм сначала был выполнен и исследован в виде сопла Лаваля, а затем сверхзвуковая часть сопла срезана и сопло испытывалось как дозвуковое. Втулка-камера смешения имела также четыре варианта диаметра $D_{\kappa} = 3,5$; 4,7; 5,2; 6,3 мм. Длина-втулки не изменялась и была равна 20 мм.

Диффузор имел внутренний диаметр выходного сечения $D_{4} = 6,7;7,9;8,4;9,5$ мм. Остальные размеры сопла втулки и диффузора во всех четырех вариантах были неизменными. Расстояние l от срек сопла до входа во втулку-камеру смешения (фиг. 2) изменялось от +6 мм, до -5 мм (знак минус здесь соответствует погружению ореза сопла внутрь входного корпуса втулки).

РЕЗУЛЬТАТЫ ОПЫТОВ

Рассматриваемые микроэжекторы, в основном, используются в двигателях с воздушными микротурбинами, работающими на сжаюм воздухе заводских пневмосетей, имеюших давление около 6 ата. В этих условиях от эжектора, расположенного перед турбиной, требуется обеспечение максимального коэффициента эжекции $\varkappa = \frac{G_2}{G_1}$ при достаточно высоком давлении $P_4^* = 1,5-2,5$ ата на выходе из эжектора. Такой уровень давления P_4^* на выходе из эжектора, т. е. на входе в турбину, необходим для обеспечения оптимальной величины параметра $\frac{U}{C_{aa}} = 0,6-0,4$, соответствующего максимальному к. п. д. одноступенчатой активной микротурбины.

Указанные выше требования, предъявляемые к воздушному мпкроэжектору, соответствуют так называемому предельному рекиму, характерному тем, что в сечении 3-3 (фиг. 1) на выходе из камеры смешения устанавливается критический режим, т. е. $\lambda_3 = 1$. В силу указанных обстоятельств в настоящей работе в большинстие случаев чисследовались и подвергались сравнению характеристики микроэжекторов на режимах, близких к предельному.

На фиг. З даны характеристики $\binom{P_4}{P_n} = f(X)$ воздушного микроэжектора, имевшего $d_{\kappa p} = 2,9$ мм, $D_{\kappa} = 5,2$ мм при давлении на входе в сопло $P_0^* = 4$; 5; 6 *ата.* Давление P_4^* — среднее давчение торможения на выходе из диффузора эжектора.

Характерным для микроэжекторов, в сравнении с характеристикими больших эжекторов [1], является их пологость характеристик в области предельных режимов. Это имеет место потому, что в силу большего относительного влияния пограничного слоя, в микроэжекторе большая неравномерность эпюры скорости в сечении 3—3, т. е. большая неодновременность установления критического режима на различных радиусах этого сечения. Получение характеристики эжектора расчетом — доволые сложный процесс, причем хорошее совпадение расчетных и опытны данных зависит от знания целого ряда опытных коэффициентов В микроэжекторах коэффициенты скорости сопла φ_c , камеры сме

шения φ_{κ} , диффузе ра φ_{g} и соответству ющие им коэффици енты восстановления полного давления σ_{i} , σ_{κ} , σ_{g} имеют други численные значения чем соответствую щие коэффициенты больших эжекторах Уже одно это оправ дывает постановко опытов с микроэжев горами в целях ил

копления экспериментальных данных по ним.

В частном случае для предельного режима, параметры которончаще всего и необходимо знать, можно путем простых выкладов получить приближенное уравнение для определения коэффициента эжекции $\times_{\rm пр}$ и давления на выходе из эжектора $P_{4\,\rm np}$ * при задавных размерах $d_{\rm кр}$ и $D_{\rm k}$ эжектора и давлении воздуха P_0 * на входе в сопло. Это наиболее распространенный случай из практики при менения микроэжекторов.

Уравнение количества движения для участка 1—3 камеры сму шения (фиг. 1) запишется в виде

$$\left(\frac{G_1}{g} C_1 + P_1 F_1\right) + \left(\frac{G_2}{g} C_2 + P_2 F_2\right) = \frac{G_3}{g} C_3 + P_3 \cdot F_3.$$
 (1)

Используя известное [2] выражение

$$\frac{G}{g}C + P \cdot F = P^* \cdot F \cdot f(\lambda),$$

где $f(\lambda)$ — газодинамическая функция, уравнение (1) запишем виде

$$P_{1}^{*}F_{1}f(\lambda_{1}) + P_{2}^{*}F_{2}f(\lambda_{2}) = P_{3}^{*}F_{3}f(\lambda_{3}).$$

Для предельного режима $\lambda_3 = 1$. Функция $\lambda_1 = 1$, так как сопли сужающиеся, функция же $0 < \lambda_2 < 1$. Следует иметь в виду, что в диапазоне λ от 0 до 1 функция $f(\lambda)$ слабо изменяется и ошибо при выборе λ_2 слабо скажется на величине определяемых в данног выводе P_4*_{np} и X_{np} . На этом основании принимаем $\lambda_2 = 0,3$. Для воздуха (k = 1,4) - f(1) = 1,27, f(0,3) = 1,05, тогда уравчине (2) примет вид

$$P_1^* F_1 \cdot 1,27 + P_2^* F_2 \cdot 1,05 = P_{3np}^* \cdot F_3 \cdot 1,27.$$
(3)

епользуя равенства:

$$P_1^* = P_0^* \cdot \sigma_c, \qquad P_2^* = P_{II} \cdot \sigma_K,$$

 $P_{4np.} = \frac{P_{4np.}^*}{\sigma_g}$ и условие $F_3 = F_1 + F_2$, из уравнения (3) можно по-

$$P_{4np.}^* = \sigma_g \left[\sigma_c \cdot P_0^* \frac{F_1}{B_3} + 0.83 \cdot \sigma_\kappa \cdot P_n \left(1 - \frac{F_1}{F_3} \right) \right].$$
(4)

При заданных $P_{4np.}^*$ и P_0^* из этой формулы можно определить и использовать эту величину при определении \varkappa_{np} . С другой пороны, для предельного режима в сечении 3—3 и критическоо режима в сечении 1—1 имеем

$$G_3 = m \cdot F_3 \frac{p_{3\text{up.}}^*}{\sqrt{T_3^*}}, \quad G_1 = m \cdot F_1 \frac{p_1^*}{\sqrt{T_1^*}}.$$
 (5)

читывая, что $T_3^* = T_1^*$, ибо по начальному условию $T_2^* = T_1^*$, а акже равенство $G_3 = G_1 + G_2$, из уравнений (5) получим

$$\frac{G_3}{G_1} = \varkappa_{\rm np} + 1 = \frac{P_{3\rm np}^* \cdot F_3}{P_1^* \cdot F_1} = \frac{P_{4\rm np}^* \cdot F_3}{P_0^* \cdot F_1 \cdot \sigma_{\rm c} \cdot \sigma_{\rm g}} \,. \tag{6}$$

Подставив в уравнение (6) выражение (4) для $P_{4 n p}^{*}$ получим

$$\varkappa_{\rm np} = 0.83 \ \frac{\sigma_{\rm K}}{\sigma_{\rm c}} \frac{P_{\rm H}}{P_0^*} \left(\frac{F_3}{F_1} - 1 \right). \tag{7}$$

При продувке микросопел $d_{\kappa p} = 2,5 - 4,0$ *мм* на $P_0^* = 6,0 - 4,0$ *ата* и критическом режиме получено $\varphi_c \approx 0,92$, чему соплотствует $\sigma_c = 0,90 - 0,94$.

Выбрав $\sigma_g = 0,80 - 0,86$ и $\sigma_{\kappa} = 0,55 - 0,65$, соответственно для $6,0 - 4,0\frac{\kappa z}{c x^2}$, расчег P_{4np}^* и \varkappa_{np} по формулам (4) и (7) дает порошее совпадение с опытом.

Малая величина δ_к объясняется большой неравномерностью шоры скорости в камерах микроэжекторов.

Таким образом, при расчете P_{4np} и $\varkappa_{\kappa p}$ микроэжекторов, имещих $d_{\kappa p} = 2,5 - 4,0$ *мм*, при выборе σ_c , σ_g , σ_κ следует пользоаться таблицей 1.

01 6556

Таблица І

с соплами, имеющим $d_{\rm KD} < 2,5$ мм, наблюди

ется резкое уменьшение коэффициента эжекции ×пр с уменьшение $d_{\text{кр}}$ при $\frac{F_3}{F_4}$ = const. Это указывает на интенсивное влияние числа kна ×пр с уменьшением d_{кр} начиная с 2,5 мм. На фиг. 4 показии график зависимости $\varkappa_{np} = f(d_{\kappa})$ при

$$\frac{F_3}{F_1} = \left(\frac{D_{\kappa}}{D_{\kappa p}}\right)^2 = 3,3 = \text{const}$$
 и $P_0^* = 5 \ \kappa c/cM^2.$

Анализ зависимости $\varkappa_{up} = \int (d_{\kappa p}),$ приведенной на фиг. 4, поки зывает, что при d_{кр} <2,5 мм - ир уменьшается примерно пропорши нально уменьшению d_{кр}. В этом случае для приближенного расч та ×пр микроэжектора, имеющего 1,5<dкр<2,5 мм, можно воспол зоваться формулой

$$z_{\rm KP} = 0.83 \, \frac{\sigma_{\rm K}}{\sigma_{\rm c}} \, \frac{P_{\rm H}}{P_0^{\rm s}} \Big(\frac{F_{\rm 3}}{F_{\rm L}} - 1 \Big) \frac{d_{\rm KP}}{2.5} \, ,$$

где $d_{\kappa p}$ — в *мм*.

Определение P4*np в случае 1,5 < dкp < 2,5 мм производится, ка и для случая d_{ко}>2,5 мм, по формуле (4). Коэффициенты σ_{κ} , σ_{c} формуле (8), как и в формуле (7), принимаются из таблицы 1. В интервале $d_{\kappa p} = 2,5 - 4,0$ мм приблизительно можно счити

и P4* пр не зависящими от абсолютного значения d_{кр} и их сл дует определять по формулам (7) и (4).

Эжекторы, имеющие сопла с $d_{\kappa p} > 4$ мм, в данной работе не ра сматриваются. Для их исследования установка, изображенная и фиг. 2. технически не пригодна. Вообще же при увеличении и (или Red) ×пр должен возрастать. Сравнивая Хпр микроэжектор и газового эжектора большой производительности [1] при одинаки

приходим к выводу, что χ_{np} микроэжектора $\frac{n}{P_{a}*}$ И вых 50-70% ниже хлр большого эжектора.

Ввиду увеличенных гидравлических потерь из-за повышенновлияния пограничного слоя в микроэжекторе следует ожидать, чи установка сопла Лаваля при сверхкритическом перепаде давлени

146

Ра, вместо сужающегося сопла, не приведет к ощутимому измене-

шю X. Опыты с четвертым вариантом микроэжектора $d_{\kappa p} = 3,5$ мм, $b_{\kappa} = 6,3$ мм, в котором последовательно устанавливались сопло Лаваля и сужающееся сопло с тем же $d_{\kappa p}$, подтверждают это предположение.

Этим доказывается нецелесообразность применения в воздушных микроэжекторах, работающих на сжатом воздухе ($P_0^* = 4 - 6 \kappa c/cm^2$) технологически более сложных сопел Лаваля.

В данной работе производилось также исследование влияния на $\chi_{\rm up}$ расстояния l от среза сопла до входа в камеру смешения (фиг. 2). Довольно большое изменение l (—5<l<6 *мм*), при прочих равных условиях, не приводит к заметному изменению $\chi_{\rm np}$.

Влияние длины камеры и угла конусности диффузора не исследовалось, они были приняты равными соответственно L = 20 мм(т. е. больше трех калибров камеры смещения), а $\gamma_{\pi} = 9^{\circ}$.

ПРИМЕНЕНИЕ МИКРОЭЖЕКТОРОВ В ТУРБИННЫХ МИКРОДВИГАТЕЛЯХ

В воздушных двигателях с микротурбинами (вспомогательный шевмо-привод, пневмошлифовальный инструмент и т. п., мощностью ($0.5 \ A. c.$) во многих случаях давление воздуха на входе в двига тель $P_0^* = 5 - 6 \ \kappa c/cm^2$. В случае применения одноступенчатой пар шальной микротурбины без противодавления, работающей на сжа том воздухе с температурой $t_0^* = 20^{\circ}$ С, степень расширения воздуха, соответствующая максимальному к. п. д. турбины, не превышает 3,0. Возникает вопрос — как. наиболее рационально использовать изапшнее давление сжатого воздуха?

Имеются два•пути решения этого вопроса: применение многоступенчатой микротурбины и применение эжектора в сочетании содноступенчатой микротурбиной.

Многоступенчатая микротурбина во многих случаях неприемлема п-за конструктивной сложности. Кроме того, эффект применения вескольких ступеней в парциальной микротурбине значительно меньший, чем в больших турбинах. Применение же микроэжектора, ве вызывая существенного усложнения конструкции двигателя, созтает, в сравнении с турбинным двигателем без эжектора, ряд преимуществ: в некоторых случаях снижается расход сжатого воздуха при одинаковой мощности двигателя; снижаются скорости воздуха пурбине (особенно на выходе), что приводит к снижению гидравпесских потерь, уровня шума и вибраций; вместо сопел Лаваля, в гурбине можно применить обычные сужающиеся сопла. Особенно пытодно применение микроэжектора в парциальных микротурбинах, так как снижение давления воздуха в эжекторе вызывает пропорпюнальное увеличение степени парциальности турбины, т. е. увеличение ее к. п. д.

Рациональность применения микроэжектора в турбинном микродвигателе можно оценить при помощи коэффициента пом, равного отношению мощности турбины с эжектором к мощности турбины бе эжектора при одинаковом давлении P_0^* , и расходе сжатого воздуха, а также при одинаковом диаметре колеса турбины D_{κ} и оборо тах $n_{\rm r}$.

Условимся параметры турбины с эжектором обозначать штри хом.

Мощность турбины с эжектором на входе можно определить по формуле

$$N_{\rm er} = G_1 \left(1 + \varkappa\right) L_{\rm agr} \left(\gamma_{\rm er} \right)_{\varepsilon} \,. \tag{9}$$

Здесь G₁ — расход сжатого воздуха;

×- коэффициент эжекции;

- L_{алт} адиабатная работа расширения воздуха в турбине эжектором;
- (η'єт)ε эффективный к.п.д. парциальной турбины. Адиабая ная работа вычисляется по формуле

$$L'_{aar} = \frac{k}{k-1} R T_4^* \left[1 - \left(\frac{P_6}{P_4^*} \right)^{\frac{k-1}{k}} \right], \qquad (10)$$

где T_4^* , P_4^* — температура и давление торможения на входе и турбину (или на выходе из эжектора);

*P*₆ — статическое противодавления за турбиной. К.п.д. пар циальной турбины

$$(\eta_{\rm er})_{\epsilon} = (\eta_{\rm er})_{\epsilon=1} \cdot \overline{\eta_{\epsilon}},$$
 (11)

- где (η_{et})_{ε=1} эффективный к.п.д. турбины, тождественной дан ной парциальной турбине, но имеющей парциаль ность ε = 1;
 - ность ε = 1; η_ε – относительный к.п.д. парциальной турбины, учиты вающий влияние потерь с парциальностью.

Мощность турбины без эжектора определяется по формуле:

$$N_{\rm er} = G_1 \cdot L_{\rm agr} (\eta_{\rm er})_{\varepsilon} . \tag{14}$$

Здесь

$$L_{agr} = \frac{k}{k-1} R T_0^* \left[1 - \left(\frac{P_a}{P_0^*} \right)^{\frac{k-1}{k}} \right]$$
(13)

адиабатная работа расширения воздуха в турбине без эжек тора;

 $(\eta_{er})_{\varepsilon} = (\eta_{er})_{\varepsilon=1} \cdot \overline{\eta_{\varepsilon}} (14)$ — относительный к.п.д. парциальной турбины без эжектора.

В формуле (13) T_0^* и P_0^* — параметры торможения на вхол в турбину без эжектора, равные параметрам торможения на вхол в эжектор в случае применения его с турбиной.

Коэффициент
$$\eta_N = \frac{N'_e}{N_{er}} = \frac{G_1 (1 + \kappa) L'_{aar} (\eta'_{er})_e}{G_1 \cdot L_{aar} (\eta_{er})_e}.$$
 (15)

Используя формулы (11) и (14), получим

$$\frac{(\eta_{\rm er})_{\varepsilon}}{(\eta_{\rm er})_{\varepsilon}} = \frac{(\eta_{\rm er})_{\varepsilon=1}}{(\eta_{\rm er})_{\varepsilon=1}} \times \frac{\overline{\eta_{\varepsilon}}}{\overline{\eta_{\varepsilon}}} \,. \tag{16}$$

Отношение $\frac{(\eta_{er})_{\epsilon=1}}{(\eta_{er})_{\epsilon=1}}$, т. е. отношение к. п. д. турбины с эжектором, имеющей парциальность $\epsilon = 1$, к к. п. д. турбины без эжектора, имеющей парциальность также $\epsilon = 1$, можно найти из графика нависимости $(\eta_{er})_{\epsilon=1} = \left(\frac{U}{C_{ar}}\right)$, приведенного на фиг. 5.

В большинстве случаев микроэжектор применяется в двигателях с парциальными микротурбинами активного типа, работающими, как правило, на левой ветви характеристики (фиг. 5). Так что приближенно можно считать

Причем точность этого выражения падает по мере приближения к $\left(\frac{U}{C_{ag}}\right)_{onr.}$ при этом $\frac{(\eta'_{er})_{\varepsilon=1}}{(\eta_{er})_{\varepsilon=1}} < \left(\frac{U}{C_{ag}}\right)': \left(\frac{U}{C_{ag}}\right)$ и коэффициент η_N навышается против действительного значения. Так как диаметр колеса, обороты (т. е. и окружная скорость U) в турбине с эжектором и без него одинаковы, получим

$$\frac{(\eta'_{\rm er})_{\varepsilon=1}}{(\eta_{\rm er})_{\varepsilon=1}} = \frac{C_{a\mu}}{C_{a\mu}}.$$
(17)

Учитывая, что

$$C_{aa} = \sqrt{2g L_{aar}}, \quad C_{aa} = \sqrt{2g L_{aar}}, \quad (18)$$

149

(здесь $\rho = 0$), имеем

$$\frac{(\gamma'_{\rm er})_{\varepsilon=1}}{(\gamma_{\rm fer})_{\varepsilon=1}} = \sqrt{\frac{L_{\rm aff}}{L'_{\rm aff}}}.$$
(19)

Более точное выражение для отношения $\frac{(\eta_{er})_{\varepsilon=1}}{(\eta_{er})_{\varepsilon=1}}$ можно по лучить непосредственно из графика характеристики турбини

$$(\eta_{\mathrm{er}})_{\varepsilon=1} = f\left(\frac{U}{C_{\mathrm{au}}}\right) \quad (\varphi_{\mathrm{ur}}, 5),$$

Относительные к.п.д. η_{ϵ} и η_{ϵ} , учитывающие влияние по терь на парциальность, определяются по парциальности є' и є в соответствующим значениям параметра $\left(\frac{U}{C_{ag}}\right)'$ и $\frac{U}{C_{ag}}$ из опытного графика $\eta_{\epsilon} = f(\epsilon)$, изображенного на фиг. 6.

При этом одна из парциальностей (є и є¹) обычно задана, а другую можно найти из следующих соображений. Так как при одинако вых расходах сжатого воздуха G_1 , расход воздуха через турбину с эжектором составляет $(1 + \chi)G_1$, а расход воздуха через турбину без эжектора G_1 , то при критическом и сверхкритическом перепаде давления в сопловом аппарате турбины площади критических се чений сопловых аппаратов связаны соотношением

$$\frac{F_{\rm KP}'}{F_{\rm KP}} = \frac{G_1(1+\varkappa) P_0^* \sqrt{T_4^*}}{G_1 \cdot P_4^* \sqrt{T_0^*}} \cdot$$
(20)

Так как при установке эжектора перед турбиной давление на входе в турбину уменьшается с P_0^* до P_4^* , то площадь критическо го сечения соплового аппарата при этом пропорционально увеличи вается, т. е. $F_{\rm kp}^1 > F_{\rm kp}$. Кроме того, $F_{\rm kp}^1 > F_{\rm kp}$ еще и за счет увеличения на $(1 + \chi)$ расхода воздуха.

Если припять неизменными размеры критического сечения сопловых каналов, то $F_{\kappa p}$ пропорциональна числу каналов z_c или парциальности ε соплового аппарата. Кроме того, $T_4^* = T_0^*$. Тогда вместо формулы (20), можно написать

$$\frac{\varepsilon'}{\varepsilon} = (1 + \varkappa) \frac{P_0^*}{P_4^*}.$$
(21)

При известной парциальности є по формуле (21) определяется парциальность є'. По парциальностям є и є' и соответствующим параметрам $\frac{U}{C_{aa}}$ и $\left(\frac{U}{C_{aa}}\right)'$ из опытного графика $\overline{\gamma}_{i\epsilon} = f(\epsilon)$ на фиг. 6 определяются $\overline{\gamma}_{i\epsilon}^{-1}$ и $\overline{\gamma}_{i\epsilon}$.

В случае постоянной парциальности є в турбине с эжектором п без эжектора будет различная высота h сопловых каналов. Тогда в формуле (16), вместо η_{ϵ} , следуст применить опытный относитель ный коэффициент η_{h} , учитывающий влияние высоты сопловых ка-150 плов. Но из опытов с микротурбинами известно, что при $\varepsilon < 0.5$ мняние ε на к. п. д. бо́льшее, чем влияние *h*. Поэтому при установэжектора в турбине целесообразнее увеличить парциальность ε , не высоту *h* соплового канала. Итак, с учетом формул (16) и (19), вормула (15) приобретает вид

$$\gamma_{iN} = \frac{N_{e\tau}'}{N_{e\tau}} = (1+x) \sqrt{\frac{1-\left(\frac{P_6}{P_4*}\right)^{k-1}}{1-\left(\frac{P_6}{P_0*}\right)^{k-1}}} \frac{\overline{\gamma_{\varepsilon}}}{\overline{\gamma_{\varepsilon}}}.$$
(22)

Если расчетный режим эжектора соответствует его предельному режиму, то в формуле (22), вместо X и P_4^* следует писать $X_{\mathfrak{np}}$ пр.

Формулу (22) можно использовать и для определения соотнонения мощностей турбинных двигателей без эжектора, но работаощих при различных давлениях сжатого воздуха ($P_0*>P_4*$) на иходе в турбину, приняв при этом X = 0. В этом случае $\eta_N < 1$, т. е. чощность турбины, работающей на пониженном давлении P_4* , ксегда меньше мощности турбины, работающей на повышенном давнении P_0^* , при одинаковом расходе воздуха. Это имеет место потому, что снижение адиабатной работы при снижении давления на иходе в турбину с P_0^* до P_4* не компенсируется увеличением к. п. д. η_{ϵ} от происходящего при этом увеличения парциальности.

В качестве примера произведем определение η_N при установке жектора на воздушном турбинном двигателе, имеющем следующие исходные данные:

Турбина осевая, диаметр колеса $D_{cp} = 40 \text{ мм}, n = 50\,000 \text{ об/мин}.$ По формуле (4) определяется $\frac{F_1}{F_3} = 0,462$, по формуле (7) $r_{np} = 0,129$. По формулам (10), (13), (18) определяются $\left(\frac{U}{C_{ax}}\right)' = 0,33$ в $\frac{U}{C_{ax}} = 0,22$, а по формуле (21) определяется $\varepsilon' = 0,282$. Исполькуя графики фиг. 6, находим $\overline{\eta}_{\epsilon} = 0,87$ и $\overline{\eta}_{\epsilon} = 0,70$. Подставив найденные и заданные величины в формулу (22), находим что $\eta_N = 0,96$.

Таким образом, в данном случае мощности турбины с эжектором и без эжектора практически одинаковы и расходуют одинаковое количество сжатого воздуха G₁. Но турбина с эжектором имеет ряд преимуществ: ниже уровень шума и вибраций, сопла простые — сумающиеся, меньше утечки от негерметичности. В некоторых же случаях кроме указанных преимуществ, применение эжектора приволит так же и к снижению расхода воздуха.

ЛИТЕРАТУРА

1. М. Е. Дейч. Техническая газодинамика, Госэпергоиздат, 1961. 2. Г. Н. Абрамович. Прикладная газовая динамика, ГИТТЛ, 1953.