ветственно, динамическое взаимодействие лопаток могут существенно отличаться.

Предлагаемые коэффициенты связи и связанности для лопаточных венцов, определенные в известной мере условно, позволяют получить относительные оценки упругого взаимодействия лопаток в зависимости от конструктивных изменений и формы колебаний венца.

Литература

- 1. Иванов В. П. Некоторые вопросы колебаний лопаточных венцов и других упругих тел, обладающих циклической симметрией. В сб.: Прочность и динамика авиационных двигателей. М., «Машиностроение», 1971, вып. 6, с. 113—132.
- 2. Мандельштам Л. И. Лекции по теории колебаний. М., «Наука», 1972. 470 с.
- З. Стрелков С. П. Введение в теорию колебаний. М., «Наука», 1964, 344 с.
- 4. Иванов В. П., Сердотецкий А.: С. Формирование разброса резонансных напряжений в лопаточных венцах.— В сб.: Вибрационная прочность и надежность двигателей и систем летательных аппаратов. Куйбышев, 1975, вып. 2 (73), с. 28—34.
- Сердотецкий А. С. Теоретическое и экспериментальное исследование причин разброса резонансных напряжений у циклически симметричных
- тел. Тр./Куйбышевский авиационный институт, 1972, вып. 57, с. 64-76.
- 6. Иванов В. П., Сердотецкий А. С. О собственных формах и частотах поворотно-симметричной системы с несовершенствами. В сб.: Вибрашионная прочность и надежность двигателей и систем летательных аппаратов, Куйбышев. 1975, вып. 2 (73), с. 34—44.
- 7. Сердотецкий А. С. Исследование разброса резонансных напряжений в лопаточных венцах авиационных ГТД. Автореф. канд. дис. Куйбышевский авиац. ин-т, 1977, 24 с.

УДК 678.5:539.4.015

Н. Д. Степаненко, Б. Н. Ковешников

ВЗАИМОСВЯЗЬ МЕЖДУ ВИБРАЦИОННЫМИ ХАРАКТЕРИСТИКАМИ СТЕКЛОПЛАСТИКОВ

В литературе отсутствуют сведения о взаимоксвязи между усталостными, демлфирующими и упругими характеристиками стеклопластиков. Установив эти взаимоксвязи, можно значительно сократить время доводки деталей ГТД: рабочих и направляющих лопаток, оболочек и др. Цель данной работы состоит в том, чтобы восполнить этот пробел.

Эксперименты по отределению демпфирующих и усталостных характеристик проводились на образцах в виде пластин (120×50×2-3, мм), закрепленных консольно, при колебаниях по первой изгибно-поперечной форме. Способ испытаций пластин изложен в работе [1]. Динамический модуль упругости определялся на образцах в виде стержней (120×25×2-3, мм), свободно подвешенных на струнах в узловых линиях первой формы изгибных поперечных колебаний [2]. Исследуемый материал—стеклопластик ЭДЦ-В различных исходных структур армирования. Возбуждение резонансных колебаний образцов осуществлялось модулированной струей сжатого воздуха. Блок-схема установки описана в работе [3]. Определение модуля упрувости Е проводилось по частоте собственных колебаний, а логарифмического декремента колебалий б по ширине резонансной кривой. Ограниченный предел выносливости о-1 определялся в режиме постоянных относительных деформаций на базе $N = 10^7$ циклов. Пересчет деформаций в напряжения проводился по закону Гука на том основанчии, что динамический модуль упругости мало меняется с увеличением наработки образцов (не более, чем на 0,5÷1%).Результаты испытаний представлены в табл. 1, пде приведены: ограниченные пределы выносливости, определенные на 15÷25 образцах; средние квадратические отклонения предела выносливости; модули упругости и декременты колебаний. Декременты колебаний получены при деформациях, равных пределам выносливости образцов на базе $N = 10^7$ ЦИКЛОВ.

Исходя из известных соотношений физики твердого тела [4] можно записать эмпирическое уравнение связи между ограниченным пределом выносливости и динамическим модулем упругости в виде

$$R_{-1} = a + bE, \tag{1}$$

где _т. — расчетный предел выносливости.

Так как прогнозирование тех или иных свойств материала по нескольким характеристикам дает более точные результаты, чем по одной, то целесообразно установить возможность прогнозирования R_{-1} на основании результатов определения Eи б. Уравнение связи межд σ_{-1} , E и б для этого случая можно записать следующим образом:

$$R_{-1} = a + bE + c \frac{1}{5}.$$
 (2)

Қаблица 1 Вибрационные характеристики стеклопластика ЭДЦ-В

Матернал	Частота коле- баний, f, Гц	Угловая ориентация, ф ⁰	Модуль упругос- $_{TH}$, $E.10^{-10}$, Па	Декремент колебаний, б	Предел вынос- ливости, 5_1.10-8, Па	Среднее квадра- тическое откло- нение предела выносливости, $\sigma_s + 10^{-8}$. Па
ЭДЦ-В (1:1), нластина	4000	0 15 90	3,07 1,85 3,07	0,0240 0,0710 0,0240	0,97 0,671 0,97	0,050 0,030 0,050
ЭДЦ-В, симметричная укладка слоев под углом к кромже иластаны	4000	0 15 30 45 75 90	4,12 3,95 2,45 1,85 1,63 2,03	0,0299 0,0393 0,0650 0,0720 0,0710 0,0696	2,14 1,64 0,965 0,671 0,515 0,560	0,113 0,113 0,029 0,030 0,0124 0,084

Возможен и другой вариант взаимосвязи:

$$R_{-1} = a + bE + c \frac{E}{\delta}.$$
 (3)

В этом уравнении учтено не только влияние, но и взаимосвязь упругой и неупругой характеристик материала. Выражения (1)—(3) в общем виде можно представить так:

$$\bar{Z}_{\sigma} = a + b\bar{x} + c\bar{y},\tag{4}$$

где $\overline{Z}_{\sigma} = R_{-1}$ — расчетное значение предела выносливости; $\overline{x} = E$ — динамический модуль упругости;

 \bar{y} — равен нулю, отношению $\frac{1}{\delta}$ и отношению E/δ для выражений (1) — (3) соответственно.

Определение коэффициентов *a*, *b* и *c* производится путем математической обработки результатов эксперимента по методу наименьших квадратов [5]. При этом сумма квадратов отклонений экспериментальных значений предела выносливости $Z = \sigma_{-1}$ от значений $\overline{Z}_{\sigma} = R_{-1}$, определяемых по уравнению репрессии, должна быть наименьшей:

$$\Sigma (Z - \bar{Z}_{\sigma})^2 = \min.$$
(5)

31

Левую часть выражения (5) обозначим *F* — это функция от неизвестных параметров *a*, *b* и *c*. Минимум этой функции на-ходится из уравнений:

$$\frac{\partial F}{\partial a} = 0; \quad \frac{\partial F}{\partial b} = 0, \quad \frac{\partial F}{\partial c} = 0.$$
 (6)

Подставив в выражение (5) \bar{z}_{σ} из уравнения (4) и произведя дифференцирование, запишем систему (6) в окончательном виде:

$$\Sigma z = na + b \Sigma x + c \Sigma y;$$

$$\Sigma zx = a \Sigma x + b \Sigma x^{2} + c \Sigma yx;$$

$$\Sigma zy = a \Sigma y + b \Sigma xy + c \Sigma y^{2}.$$
(7)

Здесь n — число образцов. Система (7) решается относительно неизвестных a, b, c. Разделив каждое уравнение на n, получим:

$$\overline{z} = a + b\overline{x} + c\overline{y};$$

$$\overline{zx} = a\overline{x} + b\sum x^2/n + c\overline{yx};$$

$$\overline{zy} = a\overline{y} + b\overline{yx} + c\sum y^2/n,$$
(8)

где $\bar{z} = \sum z/n; \ \bar{x} = \sum x/n; \ \bar{y} = \sum y/n;$

 $\overline{yx} = \sum yx/n$; $\overline{zx} = \sum zx/n$; $\overline{zy} = \sum zy/n$ — средние значения соответствующих значений.

Умножая первое уравнение системы (8) на \bar{x} и вычитая его из второго уравнения этой системы, получим:

$$\overline{zx} - \overline{z}\,\overline{x} = b\left(\frac{\Sigma\,x^2}{n} - \overline{x}^2\right) + c\,\left(\overline{yx} - \overline{y}\,\overline{x}\right). \tag{9}$$

Умножая первое уравнение (8) на \bar{y} и вычитая его из третьего уравнения одстемы (8), получим:

$$\overline{zy} - \overline{z}\,\overline{y} = b\,(\overline{yx} - \overline{y}\,\overline{x}) + c\Big(\frac{\Sigma\,y^2}{n} - \overline{y}^2\Big). \tag{10}$$

Иопользуем статистические обозначения дисперсии σ^2 и частных коэффициентов корреляции r_{yx} , r_{xz} , r_{zy} .

$$\sigma_{x}^{2} = \frac{\sum x^{2}}{n} - \bar{x}^{2}; \quad \sigma_{y}^{2} = \frac{\sum y^{2}}{n} - \bar{y}^{2}; \quad \sigma_{z}^{2} = \frac{\sum z^{2}}{n} - \bar{z}^{2};$$

$$r_{yx} = \frac{\bar{yx} - \bar{yx}}{\sigma_{x}\bar{\tau}_{y}}; \quad r_{xz} = \frac{\bar{xz} - \bar{xz}}{\sigma_{x}\bar{\tau}_{z}}; \quad r_{zy} = \frac{\bar{zy} - \bar{z}y}{\sigma_{z}\sigma_{y}}.$$
(11)

Запишем уравнения (9) и (10) в виде

$$\left. \begin{array}{l} r_{zx} \sigma_z = b \ \sigma_x + cr_{yx} \ \sigma_y; \\ r_{zy} \ \sigma_z = br_{yx} \ \sigma_x + c \ \sigma_y. \end{array} \right\}$$
(12)

32

		Расче	тные значения предела выно	ЭСЛИВОСТИ
Материал	Угловая ориента- ция, Фо	$\begin{array}{c} R_{-1} = a + BE \\ (R_{-1} = -442.25 + \\ + 0.544.10^{-2} E) 10^{-8}, \Pi_{\rm B} \end{array}$	$\begin{array}{c} R_{-1} = a + bE + c \frac{1}{\delta} \\ + 0,656 \cdot 10^{-2} E - 12,81/\delta) \cdot 10^{\cdot 3} \\ \Pi a \end{array}$	$ \left(\begin{array}{c} R-1 = a + bE + c E/\delta \\ R-1 = -696, 1 + 0, 75, 10^{-3}E \\ -0.43, 10^{-4} E/\delta \right) 10^{-8}, \Pi a \end{array} \right) $
11-17 B.110	0	1,23	1,04	1,06
The little	45	0,564	0,59	0,68
	06	1,23	1,04	1,06
	0	1,79	1.835	1,80
ДЦ-В, симмет-	15	12.1	1,825	1,84
ичная укладка тога пол vr-	30	0,890	0,97	0,978
ом к кромке	45	0,564	0,596	0,58
цастин	75	0,444	0,449	0,428
	06.	. 0,662	0,71	0.70

Таблица 2

33

Решая уравления (12) относительно *b* и *c*, приходим к следующим выражениям:

$$b = \frac{\sigma_z}{\sigma_x} \frac{r_{zx} - r_{zy}r_{xy}}{1 - r^2_{xy}};$$

$$c = \frac{\sigma_z}{\sigma_y} \frac{r_{zy} - r_{zx}r_{xy}}{1 - r^2_{xy}}.$$
 (13)

Из первого уравнения системы (8) находим, что

$$a = \bar{z} - b \, \bar{x} - c \, \bar{y}. \tag{14}$$

Определение коэффициентов *a*, *b* и *c*, дисперсии σ_{x^2} , σ_{y^2} н σ_{z^2} , коэффициентов корреляции r_{xy} , r_{xz} , r_{zy} проводилось на ЭВМ. Результаты расчета параметров корреляционных уравнений (1) - (3), уравнения теоретических линий регрессии приведены в табл. 2, коэффициенты корреляций и суммы мвадратов отклонений $\sum_{l=1}^{n} [(\sigma_{-1})_l - (R_{-1})_l]^2$ приведены в табл. 3. На рис. 1 изображена теоретическая линия регрессии для уравнения (1) н папесены экспериментальные данные, которые Таблица 3

	Расчетные значения предела выносливости					
Параметр	$R_{-1} =$	$R_{-1} =$	$R_{-1} =$			
	= a + bE	$= a + bE + c 1/\delta$	$= a + bE + c 1/\delta$			
Коэффициент корреляции т	0,935	$r_{zx} = 0,935$ $r_{zy} = 0,468$ $r_{xy} = 0,670$	$r_{zx} = 0,935$ $r_{zy} = 0,737$ $r_{xy} = 0,883$			
Сумма квадратов от- клонений Σ[(σ_1)₁(R_1)₁]² (× 10 ⁻¹⁶ , Па²	0,3064	0,1758	0,2153			

позволяют сопоставить между собой результаты расчета и эксперимента. Теснота корреляционной связи между случайными величинами характеризуется, как известно, значением коэффициента корреляции и суммой квадратов отклонений между σ_{-1} и R_{-1} .

Из табл. 2 видно, что расчетные пределы выносливости R_{-1} с использованием зависимости (1) соответствуют экспези

риментальным эначениям и укладываются, в основном, в диашазон $\sigma_{-1} \pm 2 \sigma_{\sigma}$, редко в диалазон $\sigma_{-1} \pm 3 \sigma_{\sigma}$. Расчетные пределы выносливости отличаются от экспериментальных не более чем на 10—15%. Вследствие этого, а также учитывая простоту определения динамического модуля упругости, выражение (1) можно рекомендовать для прогнозирования, в первом приближении, предела выносливости.

Рис. 1. Зависимость предела выносливости от дипамического модуля упругости

Более точнюе прогнозирование предела выносливости обеснечивается при использовании зависимостей (2) и (3), так как при этом сумма квадратов отклонений между σ_{-1} и R_{-4} получается меньше, чем по зависимости (1).

Литература

- 1. Нванов В. П., Степаненко Н. Д., Чураев Р. В. Способ испытания образцов, выполненных в виде пластичкок, на усталость при поперечном изгибе. А. с. № 214179 ио кл. 42 к., 34/04. Бюллетень № 11, 1968, с. 111.
- 2. Степаненко Н. Д. Апизотропия динамических упругих свойств стекло-

илистиков. - В ки.: Прочность пластмасс и элементов конструкции подвижного состава. Ростов-на-Дону, РИИЖТ, 1974, вып. 101, с. 37—47. 3. Степаненко Н. Д., Ковешников Б. Н. Методика определения усталост-

- Степаненко Н. Д., Ковешников Б. Н. Методика определения усталостпых свойств стеклопластиковых лопаток компрессоров и стеклопластиков при высокочастотных колебаниях. — В кн.: Усталостная прочность и долговечность авиационных конструкций. Куйбышевский авиац. ин-т, 1974, вып. 1, с. 103—112.
- Латишенко В. А. Диагностика жесткости и прочности материалов. Рига, «Знание», 1968, с. 320.
 Конончук Н. И. Методы оценки выносливости жаропрочных сплавов.
- 5. Конончук Н. И. Методы оценки выносливости жаропрочных сплавов. М., «Металлургия», 1966, с. 247.

УДК 531:539,3

В. А. Фролов, А. И. Ермаков

КОЛЕБАНИЯ ЛОПАТОЧНЫХ ВЕНЦОВ С БАНДАЖНЫМИ ПОЛКАМИ

Настоящая работа посвящена дальнейшему совершенствованию методов определения динамических свойств лопаточного венца с полочным бандажом и продолжает исследования, изложенные в [1], [2].

Раксмотрена система, состоящая из упругого диска и набора лопаток с невекомыми бандажными полками, установленными на радиусе R_c (рис. 1). Полки соседних лопаток стыкуются между кобой в точках «*a*» и «*b*». Предполагается, что недеформируемые полки допускают относительные линей-

Рис. 1. Схема усплий, действующих в полочном бандаже