йыноуддоП. N. A

ВЛИЯНИЕ ЛОКАЛЬНОГО ХАРАКТЕРА ТУРБУЛЕНТНОСТИ СМАЗКИ НА РАСПРЕДЕЛЕНИЕ ДАВЛЕНИЙ В ГИДРОСТАТИЧЕСКОМ ПОДШИПНИКЕ

При решении ряда практических задач, связанных с турбулентностью в тонких смазочных пленках, наиболее широко используются обобщения В.Н.Константинеску [I], основанные на концепции Прандтля о длине пути перемешивания. Величини коэффициентов кажущегося возрастания вязкости смазки $K_{\mathcal{X}}$ и $K_{\mathcal{Z}}$ при таком подходе зависят лишь от уровня (или интенсивности) куэттовского движения рабочей жидкости в заворе подшиника и определяются как

$$K_{\infty} = 1 + 0.00217 \, Re_{\omega}^{0.83}; \quad K_{z} = 1 + 0.00166 \, Re_{\omega}^{0.74},$$
 (I)

где Re_{ω} - число Рейнольдса окружного течения, обусловденного вращением вала.

Указанный подход, как известно, приводит к обобщенному на случай турбулентной смазки уравнению Рейнольдса

$$\frac{\partial}{\partial x} \left(\frac{h^3}{K_x} \frac{\partial P}{\partial x} \right) + \frac{\partial}{\partial z} \left(\frac{h^3}{K_z} \frac{\partial P}{\partial z} \right) = 6 \mu \omega R \frac{dh}{dx} . \tag{2}$$

Как и аналогичное уравнение для ламинарных течений, оно линейно относительно давлений в смазочном слое, что обеспечивает преемственность решений в ламинарной и турбулентной постановке и позволяет успешно разрешать многие практические задачи, связанные с расчетом и проектированием гидродинамических подшипников.

При расчете гидростатических подпинников с турбулентной смавкой использование уравнения (2) в линейной трантовке с коэффициентами (I) требует определенной осторожности, так как течение рабочей индкости в подминенках с принудительной подачей смавки харахтеризуется достаточно интенсивными напорными составилющими. Последние вносят определенной вклад в турбулизацко потоков смазки, а в
зависимостях (I) этим пренебрегается.

В лаборатории Харьновского авиаинститута разрабатывается новый подход [2] к определению коэффициентов турбулентности смазки, увязывающий их величину с локальной интенсивностыю как напорных

гочений, так и течений, обусловленных сиоростью поперечного сдении. Интенсивность указанных течений при этом оценивается соответотвующими числами Рейнольдса (Re_{ρ} и Re_{ω}), а исоффициенты катущегося увеличения вязкости определяются соотношениями

$$\Lambda_{T,Z} = \left(\frac{Re_{S}}{Re_{x,z}^{*}}\right)^{2,15} = \begin{cases} 1 & npu & Re_{S} \leq Re_{x,z}^{*} \\ > 1 & npu & Re_{S} > Re_{x,z}^{*} \end{cases}, \tag{3}$$

где Re_s — местное число Рейнольдса, рассчитанное по средней розультирующей скорости потока; $Re_{x,z}$ — критические числа Рейнольдса соответственно скружных и осевых потоков: $Re_x = Re_x = Re$

 Re_p

ное число Рейнольдса результирующего напорного течения. Предлагаемый метод оценки коэффиционтов турбулентности смаз-

преддагаемым метод оценка коэффициентов туроулентности смазки позволяет не только производить расчет подшипников с позиций, допускающих существование смещанных

режимов течения смавки [3], но и вносит существенные коррективы в описание турбулектности по сравнению с работой [1].

на рис. І представлены зависимости козффициентов турбулентности, рассчитанные по формуле (3) с вве-

дением параметра од , учитывающего соотношение интенсивностей на-

TOPHEL H OLDER ODER 1030EEE

$$\alpha = azctg \frac{Re_{\omega}}{Re_{\rho}} \; ; \quad \left(0 \leq \alpha \leq \frac{\pi}{2}\right).$$

Там же для сравнения приведены вависимости (I), взятие из работы [I]. Графическое сопоставление двух методов оценки коэффициентов турбументности показывает, что при $\propto \frac{\pi}{2}$ абсодотное согласование между ними сущест-

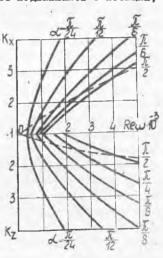


Рис.І.Влияние числя Рейнопьдся R_{EO} на коэффициенты туроўментности сываючной пленки в окружном (С) и оселом (Е) направления: — по формуле (3) при различных значениях параметра « ; — — по формуле (1)

вует линь в тех случаях, когда $Re_{co} = 0$ или $Re_{co} = 4000$.Однако при $K_{C_{co}} = 4000$ результаты обоих подходов в отномение оценки коэффицеевтов $K_{co} = K_{co} = K_{co}$ совпадают. Следует отнетить очень хоронее согласование зависимостей (3) с теорией интегральных харантеристик [4]. Так при $\alpha = \frac{\pi}{2}$ выражения (3) принимают вид

$$K_z = \left(\frac{Re_{\omega}}{2038}\right)^{5.75};$$

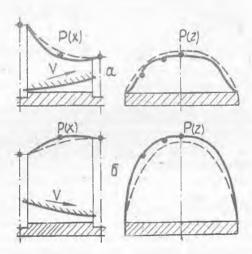
$$K_{x} = \left(\frac{Re\omega}{1019}\right)^{0,75},$$

а в работе [4] эти коэффициенты определяются как

$$K_{z} = \left(\frac{Re_{\omega}}{2060}\right)^{0.75}; \quad K_{\infty} = \left(\frac{Re_{\omega}}{977}\right)^{0.75}.$$

Таким образом, практически на всем диапазоне Re_{ω} напорятечения по сравнению с подходом [I] уведичивают коэффициенты турбулентности смазки. Исключение составляют лишь случаи сменанных режимов, когда на тех или иных участках целевого тракта подвиния на возможно сохранение даминарных режимов течения даже при достаточно высоких значениях Re_{ω} .

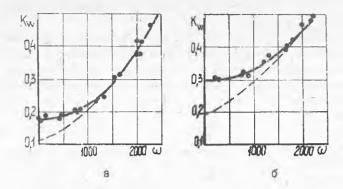
При одной и той же окружной скорости вращения вада интенсивность напорных течений в гидростатическом подвипнике тем больме, чем выше давление его питания. С ростом последнего уменьшается величина параметра α , а степень турбулизации потоков смазки воврастает.


Следует отметить, что интенсивность напорных течений по длини и периметру гидростатического подшипника не постоянна. В центральной части межнамерных перемычек подшипника течения: смазки обусловнены в основном вращением важа, а осевые напорные потоки возрастатот от середины подшипника к его тордам. Благодаря этому, локальным карактер турбулектности проявляется тем заметнее, чем выше перепады давлений между несущими камерами подшипника и областью слива. Поэтому расчет гидростатических подшипников, работающих на маловяних смазках и при высоких давлениях питания, должен проводиться с учетом интенсивности напорных течений.

Как понавано в работе [5], на основании зависимостей (3) и уравнения спломности среды удается получить уравнение Рейнольдса

форме (2), которое следует рассматривать нак нединейное, так как поффициенты K_{x} в K_{z} зависят от нокальных граднентов функции распределения двелений.

Решения пелинейного уравления (2), выполненные итерационными потодеми, показывают, что локальный характер турбументности смази вносит существенные коррективы в гаспределение давлений по пеиметру подвишника. На рис. 2 приведены эпоры распределения давлеий в окружном и осе-


ON HANDSBUCKERY RS иной из межкамерих перемычек. Сплок-WE BURNN COOTBETCTмот ремению нелинейпого уравнения (2) с 100ффициентами (3),а унктирные - линейной постановке той же вамчи с коэффиционтами (I). Оба решения проюдились при одинакоих граничных услови-II. BERTHE ME SECHEимента. Опытные знаония давлений в отдольных точках на продольной оси сим-

продольной оси симпотрим межкамерноч не ремычки показывают, не уревнения Рейнольдса в линейной постанование опыта с теоре— (3); опытные значения давлений тическими результата—

им наблюдается при трактовке коэффициентов турбументности нак ломольных параметров.

Сравнение экспериментальных дажных с результатами расчета грузоподъемности радиального гидростатического подшиника, полученными при двух различных подходах к описанию турбулентности, привенедено на рис. 3. Из рисунка видно, что, учитывая влияние напорных течений на турбулентность смазки, можно даже при не очень высоких

Р и с. 3. Влияние частоти вращения вала на коэффицеент грузоподремности подминията при различных относительных эксцектрисктетах: $a - \varepsilon = 0,2$; $d - \varepsilon = 0,5$; — — расчет с использованием зависимостей (I); — расчет по методике данной работи; выспериментальные данные

давлениях питания $\left(P_{\rm SX}=12\cdot10^{5}\frac{H}{M^{2}}\right)$ добиться мучнего согласования расчетных и экспериментальных данных в вироком диапазоне частот вращения вала. Для гидростатических подминников, работавщих при высоких давлениях питания, эти уточнения могут оказаться более существенными и охватывать более широкий диапавон скоростей вращения.

Выводы

- I. В гидростатических подвинниках напориме течения смазки оказывают тем большее влияние на его характеристики, чем нике частота вращения вала.
- 2. Коэффициенти турбулентности смазки носят вокальный характер и могут быть оценены по зависимостим (3).
- 3. Проявление локального характера турбукентности в цемевых трактах подшипников тем заметнее, чем меньме параметр α , определяемый соотношением интенсивностей курттовских и напорных течений смазки

- I. Constantinesku V.N. On turbulent lubrication. -Proc. Inst. Mech. Eng. - 25. 1959, v. 173, N. 38, p.p. 881 - 900.
- 2. П о д д у б н и й А.М. О совместном влияние сдвиговых и напорных течений на характеристики несущего слоя смазки гидростатического подминика. В нн.: Исследование и проектирование гидростатических опор и уплотнений быстроходных машин.-Харьков, 1976, вып. 3.
- 3. Артеменко Н.П., Поддубный А.И., Чайка А.И. О смещанном режиме течения смазки в многокамерном гидростатическом подминнике. - В кн.: Исследование и проектирование гидростатических опор и уплотнений быстроходных машин. Харьков, 1973.
- 4. Х и р с (Hizs G.G). Применение теории интегральных характеристик пространственного течения к турбулентным пленкам смажи. Проблемы теории и смажи, 1973, \aleph 2.
- 5. Поддубний А.И. Расчет характеристик гидростатических подвинников с учетом интексивности сдвиговых и напорных течений. - В кн.: Исследование и проектирование гидростатических опор и уплотнений быстроходных машин. Харьков, 1977, вып. 4.

УДЖ 531.4.:670.17(088.8)

Ю.К.Пономарев, В.А.Антипов

ИССЛЕДОВАНИЕ АНИЗОТРОПИИ УПРУГО-ДЕМПФИРУЮНИХ СВОЙСТВ КОЛЬЦЕВЫХ ГОФРИРОВАННЫХ ЛЕМПФЕРОВ СУХОГО ТРЕНИЯ

Многослойные кольцевые гофрированные деипферы (МКГД) пироко применяются для гашения колебаний роторов турбомамин. Однако деми-феры, используемые в настоящее время на авиационных ГТД, анизотропны по упруго-демпфирующим свойствам. Степень анизотропии свойств деипфера зависит от числя его пролетов, наличия впоночного паза, величины постоянной симы, действующей на демпфер, неточности изготовления деталей демпфера и т.д. Исследования динамики роторов на анизотропных упруго-демпферных опорах [1], подверженных действию интенсивных вибраций, показано, что анизстропность, в частности, жест-