Влияние вынужденных колебаний на самовозбуждающиеся колебания ротора с гидростатическими подшинниками проявлястся висшне через изменение частоты самовозбуждающихся колебаний. Отношение скорости вращения ротора, при которой позникают самовозбуждающиеся колебания, к частоте самовозоуждающихся колебаний на границе устойчивости не зависит от амилитуды вынужденных колебаний.

Полученные теоретические выводы хорошо согласуются с имеющимися экспериментальными данными.

ЛИТЕРАТУРА

1. Ямпольский И. Д., Пируев Е. В. Несущая способность и устойчивость четырехкамерного гидростатического подшипника. Энергомашиностроение, 1966, № 6.

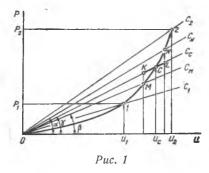
2. Малаховский Е. Е. Устойчивость и вынужденные колебания ро-

торов на гидростатических подшипниках. Машиноведение, 1967, № 1.

3. Теодорчик К. Ф. Автоколебательные системы. Изд. 2-е, Гостех-

4. Боголюбов Н. Н., Митропольский Ю. А. Асимптотические методы в теории нелинейных колебаний. Изд. 2-е. Физматгиз. 1958.

Ю. А. ВОЛКОВ


ОПРЕДЕЛЕНИЕ АМПЛИТУД ВЫНУЖДЕННЫХ КОЛЕБАНИЙ ВРАЩАЮЩЕГОСЯ РОТОРА НА ГИДРОСТАТИЧЕСКИХ ПОДШИПНИКАХ

Применение в быстроходных энергетических машинах в качестве опор роторов гидростатических подшипников выдвинуло задачу определения расчетным путем амплитуд вынужденных колебаний вращающегося ротора на нелинейных упруго-демпферных опорах.

Не останавливаясь подробно на вопросах схематизации, заметим, что гидростатический подшипник можно представить в виде нелинейной опоры с заданной упругой характеристикой и

коэффициентом демпфирования.

Процессы в системах с нелинейными элементами выражаются, как известно, нелинейными дифференциальными уравнениями. Регулярные методы их решения отсутствуют, поэтому каждая задача решается тем или иным приближенным способом.

Реализация многих из этих способов связана с определенными математическими трудностями.

Ниже будет изложен один из способов определения амплитудно-частотной характеристики вращающегося ротора на нелинейных упруго-демпферных опорах.

Указанную задачу будем решать, исходя из следующих усло-

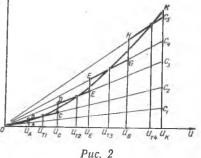
1. Рассматривается вившийся режим вращения ротора.

2. Движение ротора происходит на режиме прямой синхронной процессии.

3. Сила трения в опоре пропорциональна скорости смещения.

4. Опора обладает изотропной характеристикой.

Основой предлагаемого метода расчета амплитудно-частотной характеристики ротора, установленного на опоры, обладающие нелинейной упругой характеристикой, является замена нелинейной характеристики опоры некоторым набором лучей, выходящих из начала координат.


установленный на двух опорах, одна из которых обладает нелинейной упругой характеристикой

Пусть при увеличении угловой скорости вращения ротора от ω_1 до ω_2 прогибы на опоре изменились от U_1 до U_2 . В том случае, когда ротор установлен на нелинейные опоры, сила упругости опоры нелинейно зависит от перемещения ротора в опоре. Как

можно видеть из рис. 1, при из-Р менении прогибов на опоре от U_1 до U_2 жесткость на опоре изменяется от $C_1 = \frac{P_1}{U_1}$ до $C_2 = \frac{P_2}{U_2}$.

Здесь Р — усилие опоре, В U — прогиб в опоре.

Пусть на каких-то оборотах ротор прогнулся таким образом, что в опоре возникла реакция $P_{\rm c}$, и прогиб на опоре составил величину U_c . Тогда жесткость опо-

ры в точке C ее характеристики следующая:

$$C_c = \frac{P_c}{U_c} \ . \tag{1}$$

Эта величина есть не что иное, как тангенс угла наклона к оси абсцисс луча, проходящего из начала координат через точку C,

$$\frac{P_c}{U_c} = \operatorname{tg} \gamma. \tag{2}$$

На характеристике нелинейной опоры рядом с точкой C можно выбрать такие точки M и N, чтобы тангенсы углов наклона $\log \alpha$ и $\log \beta$ отличались от $\log \gamma$ весьма незначительно, и таким образом, на участке от величины прогибов опоры U_M до U_N (рис. 1) нелинейную характеристику опоры MCN можно заменить линейной KCL.

Производя последовательную замену участков нелинейной характеристики на линейные участки, получим аппроксимиро-

ванную нелинейную характеристику (рис. 2).

Вместо нелинейной упругой характеристики получим, таким образом, характеристику OABCDEFGHK. Каждый из участков ломаной можно рассматривать как участок линейной характеристики с жесткостями C_1 , C_2 , C_3 , C_4 , C_5 .

Построим набор линейных амплитудно-частотных характеристик, соответствующих набору лучей, с помощью которых аппроксимируется нелинейная упругая характеристика (рис. 3).

Так как массовые характеристики системы остаются без из-

менения, а изменяются лишь жесткостные и. если учесть, что в данном случае мы рассматриваем нелинейную упругую опору с характеристикой сткого типа, то критические скорости ω_{c2} ; ω_{c3} ; ω_{c4} ; ω_{c5} , COOTветствующие аппроксимирующим лучам C_1 , C_2 , C_3 , C_4 , C_5 , располагаются в ряд по возрастающей величине.

По оси ординат на

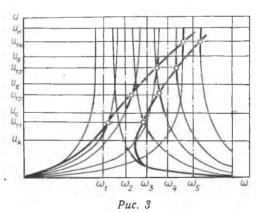


рис. З отложим отрезки $U_{\rm A}$, $U_{\rm C}$, $U_{\rm E}$, $U_{\rm G}$, $U_{\rm K}$, которые соответствуют точкам перехода от линейной характеристики OA к BC и т. д.

Затем сопоставляя вместе рисунки 2 и 3, заметим, что на прогибе опоры от 0 до $U_{\rm A}$ опора работает как линейная с жест-

костью C_1 .

При величине прогиба от $U_{
m A}$ до $U_{
m C}$ опора работает как ли-

нейная с жесткостью C_2 и так далее.

Необходимо заметить, что на амплитудно-частотной характеристике ротора, установленного на две упругие опоры, одна из которых обладает нелинейной упругой характеристикой, можно найти точки, соответствующие точному решению ($U_{\rm T1}$, $U_{\rm T2}$, $U_{\rm T3}$,... (рис. 3). Через эти точки и проводится результирующая амплитудно-частотная характеристика, соответствующая нелинейной системе.

Построение набора амплитудно-частотных характеристик ротора на упруго-демпферных опорах ведется методом разложения по собственным формам [1].

Прогибы ротора ищутся в виде ряда

$$U_{(z)} = \sum_{\kappa=1}^{n} (C_{\kappa x} + i C_{\kappa y}) y_{\kappa}(z), \tag{3}$$

где $y_{\kappa}(z)$ — к-тая форма собственных колебаний ротора, установленного на упругие опоры.

Коэффициенты разложения $C_{\kappa x}$, $C_{\kappa y}$ определяются из системы уравнений:

$$L_{1}C_{1x} - C_{1y}K_{11} - G_{2y}K_{12} - C_{3y}K_{13} - \dots - C_{\kappa y}K_{1\kappa} = \omega K_{\rho_{1}}(z_{i})$$

$$L_{\kappa}C_{\kappa x} - C_{1y}K_{\kappa 1} - C_{2y}K_{\kappa 2} - C_{3y}K_{\kappa 3} - \dots - C_{\kappa y}K_{\kappa \kappa} = \omega K_{\rho\kappa}(z_{i})$$

$$L_{1}C_{1y} + C_{1x}K_{11} + C_{2x}K_{12} + C_{3x}K_{13} + \dots + C_{\kappa x}K_{1\kappa} = 0$$

$$L_{\kappa}C_{\kappa y} + C_{1x}K_{\kappa 1} + C_{2x}K_{\kappa 2} + C_{3x}K_{\kappa 3} + \dots + C_{\kappa x}K_{\kappa \kappa} = 0,$$

$$\Gamma De \qquad \qquad \int_{0}^{e} \alpha(z) y_{n}(z) y_{\kappa}(z) dz = K_{\rho\kappa};$$

$$\int_{0}^{e} m(z) \varepsilon(z_{i}) y_{\kappa}(z) dz = K_{\rho\kappa}(z_{i});$$

$$\Pi_{\kappa} \frac{\omega_{c\kappa}^{2} - \omega^{2}}{\omega} = L_{\kappa};$$

$$(5)$$

$$\Pi_{K} = \int_{0}^{e} m(z) y_{cK}^{2}(z) dz + \sum_{i=1}^{l} m_{i} y_{cKi}^{2} + \int_{0}^{e} \rho I^{*} [y_{cK}(z)]^{2} dz + \sum_{i=1}^{l} I_{g}^{*} (y'_{cKi})^{2};$$

m(z) — погонная масса;

 $\alpha(z)$ — коэффициент трения;

 $\varepsilon(z)$ — эксцентриситет;

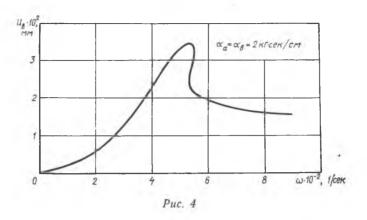
ω_{ск} — величина к-той критической скорости;

 ω – угловая скорость, на которой определяются прогибы ротора;

р — плотность материала ротора;

 I_{g}^{*} — приведенный момент инерции.

Ротор на нелинейных упруго-демпферных опорах


Особенностью расчета ротора на двух или более нелинейных упруго-демпферных опорах является то, что в этом случае нет возможности построить набор линейных амплитудно-частотных

 $T a \emph{блица} \quad \emph{1}$ Характеристика опоры « \emph{A} »

Таблица 2 Характеристика опоры «В»

N	Прогиб в опоре A, Ua	Подат. на участке, δ_a
1	$0\div U$ 1 a	δ _{1a}
2	$U_{1a} \div U_{2a}$	02a
3	$U_{2a} \div U_{3a}$	бза
4	$U_{3a} \div U_{4a}$	δ4α
n	$U_{(n-1)a} - U_{na}$	δna

N	Прогиб в опоре В, U_b	Подат. на участ., _{Фр}	
1	0 <i>÷U</i> 1 <i>b</i>	δ ₁ <i>b</i>	
2	$U_{1b} \div U_{2b}$	δ2 <i>b</i>	
3	$U_{2b} \div U_{3b}$	δ3 <i>b</i>	
4	$U_{3b} \div U_{4b}$	δ4 <i>b</i>	
	1		
n	$U_{(n-1)b} \div U_{nb}$	δnb	

характеристик, т. к. неизвестно, в какой последовательности меняются податливости опор.

В этом случае при вычислении амплитудно-частотной характеристики как бы моделируется работа ротора на нелинейных опорах. Поясним это для расчета амплитуд колебаний ротора на двух нелинейных опорах.

Нелинейные характеристики опор аппроксимируются и зада-

ются в виде таблиц.

Подсчитывается первая критическая скорость ротора, установленного на упругие опоры с податливостями δ_{1a} и δ_{1b} [2].

Расчет амплитудно-частотной характеристики ротора на не-

20 10 0 0,2 0,4 0,6 U,MM PUC. 5 линейных упруго-демпферных опорах начинается с участков характеристики с податливостями и угловой скорости, которая меньше первой критической скорости ротора. Расчет ведется по формулам (3), (4), (5).

Задается ряд угловых скоростей, для которого подсчитывается амплитудно-

частотная характеристика.

Подсчитываются прогибы ротора на первой скорости из указанного ряда с податливостями δ_{1a} и δ_{1b} . Если прогибы на опорах «А» и «В» попали в интервалы прогибов, соответствующие податливостям опор δ_{1a} и δ_{1b} (см. табл. 1 и 2), то переходим к расчету прогибов на следую-

щей угловой скорости из этого ряда с податливостями опор δ_{1a} и δ_{1b} . Если полученные прогибы вышли из интервалов прогибов, соответствующих δ_{1a} или δ_{1b} , то амплитуды на следующей угловой скорости подсчитываем с податливостями опор, соответствующими тем интервалам U_a и U_b , в которые попали прогибы на опорах «А» и «В» при расчете прогибов на предыдущей угловой скорости. Подсчитав прогибы для всего заданного ряда угловых скоростей, получим амплитудно-частотную характеристику ротора на нелинейных упруго-демпферных опорах.

 \dot{M} етод запрограммирован для решения задачи на ЭЦВМ M-20.

Характеристика ротора

N сече- ния	Длина участь z, см	a, $Macca$ $m(z)$,	участка кгсек² см	Изгибная кость <i>ЕІ</i>	жест- , кгсм²	Эксцентр. ц. тяж. в, см	Примечание
1 2 3 4 4 5 6 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	0 0,6 10 ¹ 0,82 10 ¹ 0,82 10 ¹ 0,82 10 ¹ 0,117 10 ² 0,117 10 ² 0,177 10 ² 0,212 10 ² 0,212 10 ² 0,212 10 ² 0,234 10 ² 0,312 10 ² 0,351 10 ² 0,351 10 ² 0,364 10 ² 0,372 10 ² 0,374 10 ² 0,374 10 ² 0,374 10 ² 0,3795 10 ² 0,3995 10 ² 0,3995 10 ² 0,4125 10 ²	0,63 0,63 0,626 0,626 0,787 0,787 0,960 0,787 0,787 0,626 0,626 0,904 0,904 0,904 0,1202 0,1202 0,1202 0,1303 0,303 0,518 0,518 0,364 0,364 0,1715 0,591 0,591	$ \begin{array}{c} 10^{-2} \\ 10^{-3} \\ 10^{-3} \\ 10^{-3} \\ 10^{-3} \\ 10^{-3} \\ 10^{-2} \end{array} $	0,1088 0,1088 0,1035 0,1035 0,1635 0,245 0,245 0,1635 0,1035 0,1035 0,1035 0,1035 0,2145 0,2145 0,2145 0,58 0,716 0,716 0,688 0,594 0,143 0,143 0,858 0,858	108 108 1010 1010 1010 1010 1010 1011 1010 1011 1010 1012 1010 108 108 108 1010 1010	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Опора «а»

Таблица 3

Пример расчета

Для расчета выбран двухопорный ротор с произвольно распределенной массой и изгибной жесткостью (табл. 3).

Амплитудно-частотная характеристика ротора определена в

диапазоне от 0 до 1000 1/сек (рис. 4).

Коэффициенты трения в опорах $\alpha_a = \alpha_b = 2 \frac{\text{кгсек}}{\text{см}}$. Опора «а» обладает линейной упругой характеристикой $\delta_a = 0.474 \cdot 10^{-3} \frac{\text{см}}{\text{кr}}$, опора «б» — нелинейной упругой характеристикой (рис. 5).

выводы

Предложен метод расчета амплитудно-частотной характеристики ротора, установленного на нелинейных упруго-демпферных опорах. Данный метод может быть применен для расчета прогибов вращающегося ротора с произвольным распределением изгибной жесткости и массы по длине ротора.

ЛИТЕРАТУРА

1. Волков Ю. А. Определение прогибов быстровращающегося ротора, установленного на упруго-демпферные опоры, методом разложения в ряд по собственным формам. М., Известия вузов, серия «Авиационная техника», 1969, $N \! \ge \! 3$.

2. Гуров А. Ф. Изгибные колебания деталей и узлов авиационных га-

зотурбинных двигателей. М., Оборонгиз, 1957.

М. Н. ЦЫГАНКОВ

О ВЛИЯНИИ СИЛЫ
ОДНОСТОРОННЕГО МАГНИТНОГО ПРИТЯЖЕНИЯ
НА РАБОТУ СИСТЕМЫ
«РОТОР — ГИДРОСТАТИЧЕСКИЕ ПОДШИПНИКИ»

В некоторых современных электрических машинах в качестве опор роторов применяются гидростатические подшипники. Ротор и его опоры представляют единую систему и совместно реагируют на внешние и внутренние возбуждения. Практика показывает, что при определенных условиях существенное влияние на состояние системы оказывает сила одностороннего магние