ры до T = 20 К вызывает снижение давления в зоне контакта уплотнительного колица с цилиндром на 45% при начальном натяге n = 1,016. для диапазона рабочей температуры T = 77 - 293 К достаточно обеспечить натяг при монтаже уплотнения n = 1,014.

Увеличение жесткости оболочки приводит к необходимости увеличивать давление упругого элемента, что определяется увеличением натяга при монтаже и соответственным ростом контактного давления и силы трения при нормальной температуре. Поэтому целесообразно использовать оболочку минимальной толщины.

В зоне контакта уплотнительного кольца с поршнем (по месту посадки кольца в канавку поршня) уменьшение температуры вызывает увеличение контактного давления.

Литература

I. Борисов в.А. Выбор эмпирической формулы для описания деформации скатия материала MP. - В сб.: Материалы научно-техническом конференции: Тез. докл. Куйбышев: Куай, 1972, с. 252-253.

УДК 629.036.3: 621.43.056

В.С.Пащенко, И.А.Холмянский

•ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ ХАРАКТЕРИСТИК КАМЕР СГОРАНИЯ С ВРАЩАЮЩИМСЯ ФОРСУНКА::М

Надежность ITД во многом определяется камерой сгорания (КС). Оценку рабочего процесса в ней производят на сснове анализа неравномерности температурного поля газового потока на выходе из нее, полноть сгорания топлива и величины диапазона устойчивого горения. Кроме того, обычно исследуют величину потерь полного давления, температурное состояние стенок жаровой трубы и ряд других показателей.

Исследование экспериментальных характеристик КС производилось на установке (рис.I), которая состоит из трубопровода I, подающего воздух от специального компрессора; корпуса КС 3, входного конуса 5, полноразмерной камеры сгорания 2 и выхлопного трубопровода 16 с дроссельным устройством для регулировки расхода и давления воздуха в КС. Входной конус 5 служит для организации потока на входе в камеру. На задней стенке конуса закреплен механизм вращения форсунки, состоящим

Р и с. І. Схема установия для экспериментальных исследований характеристик намер сторания с вращающимися форсунками

из мультипликатора 8 и электродвигателя 7. Камера сгорания 2 берется полноразмерная с изделия и состоит из наружного и внутреннего кожуха. Топливо в форсунку 6 подается по трубке 17 через топливоподводящув втулку, имеющув месть радиальных каналов. На выходе из КС устанавливается полноразмерный сопловой аппарат турбины 9, на ним - поворотный диск IO, на котором размещены гребенки датчиков замера температуры II и полного давления выходящих газов I2. Диск с датчиками через пару конических шестерен I3, вращаемых электромотором I4, может поворачиваться с остановками через IO, I5 и 30 градусов. В моменты остановок производится запись температуры и давления регистрирующими приборами на ленту. 23 один оборот диска датчики в сечении А - А могут фиксировать температуру и давление лотока газа в 180 точках, если шаг поворота 102 действительно, при этом наблюдается 36 положений диска, в каждом из которых производится одновременным замер двумя гребенками из пяти териопар и яяти датчиков давлений. Такое количество замеров на каждом из режемов позволяет получить достаточно объективную оценку параметров газового потока. Схема препарирования обеспечивает, кроме того, замеры температуры и давления на входе в камеру (сечение В - В на рис.I). для записи температуры использованы приборы ЭПП-О9 или КСП-4, а для записи давления - одинсчные или групповые манометры ГРМ с соответствурыими пределами измерений.

Расход воздуха фиксируется с помощью нермального мерного сопла, а расход топлива — с помощью штихпробера с компенсационным бачком.

датчики полного давления выполнены в виде трубок Прандтля с учетом требуемых нормативов. Термопары хромель-копелевые на входе и хромель-алюмелевые на выходе из КС соответственно, диаметр спая 0,8 мм. Система привода поворотного диска с датчиками оборудована сельсинной следящей системой и может давать единичные замеры или работать в автозатическом режиме. Сбработка экспериментальных данных производилась за основе минимизации функции наименьших квадратов с помощью алгоритма Нелдера-Мида. На первом этале проводились сравнительные исследования окружной (по углу ϕ°) и радиальной (по h_i/h_K) неравномерностей температурных полей КС традиционной схемы и с вращающейся форсункой (рис.2 и 3). Неравномерность температурного поля ряда двигателей характеризуется данными табл. I.

Таблица І

Параметры			Двига	тели						
	с каме традиц	рами сгор ионных сх	ания ем	с камерами сгорания с вращающимися форсунками						
	T58- GE8	AM-25	РД-ЗМ	ПГД-ЗФ	ТВд-ІО	J 69-T-25				
t <mark>*</mark> ,°C	880	866	858	828	880	827				
H _t ,%	+30,0 -26,6	+18,1 -10,4	+14,0 -14,9	+6,6 -7,8	+8,5 -9,I	+3,5 -4,4				
Q _{max}	I,36	I,25	1,35	I,I0	I,I4	I,04				

Рис. 2. Окружная и радиальная неравномерности температурных полей КС традиционной схемы двигателей Т58-GE в (а), AM-25 (б), FA-3M (в)

Следует заметить, что наблюдавшийся разброс средних температур от 827 до 880°С не оказывает существенного влияния на относительную оценку неравномерности.

Из параметров оценки неравномерностей наибольший интерес вызы - вает

Рис. 3. Окружная и радиальная неравномерности температурных полей КС с вращающимися форсунками двигагелей ГТД-Зу (а), ТБД-IO (б), J69-T-25 (в)

$$Q_{\max} = \frac{T_{i\max}^{*} - T_{\kappa}^{*}}{T_{r}^{*} - T_{\kappa}^{*}}$$

который наилучшим образом учитывает наличие пиковых нагрузок. ннал приведенных данных (см.табл. 1, рис. 2 и 3) показывает, что значен Q тах почти в два раза меньше у КС с ВФ и достигают 1,04. Применение на двигателе Т58- GEB даже шестнадцати форсунок дает на 30% большую неравномерность.

Р и с.4. характеристики изменения коз $_{x}$ ициента полноты сгорания в зависимости от коэффициента избытка воздуха у следующих двигателей: I-T58-6 x8, 2 - TB2-II7; 3 - РД-ЗМ; 4 - РТд-ЗФ; 5 - ТВД-I0; 6 - ГТД-I

В отношении распределения температур по высоте сечения на выходе из КС (см.рис.2,3,г,л,6) можно заметить, что требуемах неравномерность достигается и статочно легко и определяется в процессе доводки в зависимости от условий охлаждения лопаток турбины.

Важное значение в оценке совершенства рабочего процесса КС имеют характеристики изменения козффициента полноты сгсрания η_r^* в зависимости от коэффициента избытка воздуха (x_{κ} , скорости воздуха на входе в камеру $W_{\delta X}$ и частоты вращения форсунки η_{c} (рис.4, табл.2).

Таблица 2

llараметры	Двигатели										
-	с намера традицио	ами сгора онных схе	ания Эм	с камерами сгорания с вращающимис форсунками							
	Т58- б е8	TB2-117	РД-ЗМ	ГГ _Д –I	ГГД-Зф	РГД−Зм	ТВД-ІО				
ακ	4,50	4,05	4,05	4,20	4,0	5,0	4,50				
η <mark>*</mark> πmax	υ , 992	,977 J	ບ ຸ ຯຽ2	0,980	υ , 980	989, U	U,994				

значения η_r^{\star} для обоих типов камер лежат в диалазоне U,977-U,994 при изменении α_{κ} от 4 до 5, т.е. на основных режимах расоты двигателей мало отличаются. Особый интерес вызывает характер кривой 4 (см.рис.4). Здесь значения η_r^{\star} увеличиваются с увеличением α_{κ} , т.е. не только на взлетном и номинальном режимах, но и при малом газе значения η_r^{\star} достигают U,994. данное явление возникает из-за сохранения высокой степени дисперсности распыла топлива на малых режимах, когда расход топлива резко падает. В этом состоит оссбое преимущество камер сгорания с вращающимися форсунками.

Другие преимущества камер с ВФ показаны на рис. 5. Исследование изменения η_r^{\star} в зависимости от частоты вращения (см.рис.5,а) позволило установить, что в зоне рабочих оборотов (заштрихованная зона) η_r^{\star} не зависит от частоты вращения. Обнаружено также слабое влия-

ние высокой скорости воздуха на входе в камеру сгорания. При ферсировании kC по скорости воздуха на 25% коэффициент η_{Γ}^{*} все еще сохраняет высокие значения (0,98 и выше). Это говорит о широких возможностях форсирования двигателя с БФ в сложных полетных условиях.

Не менее интересны резуль 496 таты исследования влияния вяз- 0,92 кости топлива на полноту сго- 0,38 рания П. . На рис. 6 и в таби. 3 показаны результаты исследований на установке Р и с. камеры сгорания с ВФ двига- сгоран теля ТВД-Ю в наземных ус- Старс всзяух ловиях. При изменении вяз- заштри кости топлива в пределах

исследовании на установке Р и с. 5. Изменения коэффициента полноты камеры сгорания с ВФ двига- сгорания двигателя ТВД-10 в зависимости от теля ТВД-10 в наземных ус... ловиях. При изменении вяз- заштрихована зона рабочих режимсв

 $\vartheta = 0,70 - 36,0 \ c \ C\tau$ при температурах от 20 до 50°С обеспечивается степень полноты сгорания $\eta_{\Gamma}^{*} = 0,977 - 0,998$ без всяких конструктивных изменений элементов форсунки и камеры сгорания. Результаты исследования камеры сгорания двигателя ТВД-IО в высотных условиях (на высоте 6000 м) и при температурах воздуха и топлива от -35 до -43°С для пускового режима запуска ($\eta_{cp} = I0\ 000\ 00/$ мин) приведены в табл.4 и на рис. 6,6. подученные значения коэффициента полноты сгорания $\eta_{\Gamma}^{*} = 0,64 - 0,79$ для камер сгорания с ВФ в два раза превышают средние значения для традиционных камер, у которых в аналогичных условиях $\eta_{\Gamma}^{*} = 0,35 - 0,4.$

Представляет интерес сравнение камер сгорания по срывным характеристикам (табл.5 и рис.7).

Рис. 6. Влияние вязкости топлива на полноту сгорания в наземных условиях при положительных температурах (а): I – A-72; 2 – PT; 3 – T-6; 4 – "T ВК; 5 – ДТ; в высотных условиях (около 6000 м) при отрицательных температурах (б): I – TC-I; 2 – T-I; 3 – T-6; 4 – ДЗ

Таблица З

Парамет-	марка топлива									
Ъ	A-72 (FOCT 2084 - 77)	PT (10C1 16564-71)	T-6 (foct 12308-66)	ТГ ВК (ГОСТ 10433-75)	ДТ (ГОСТ 1667-68)					
Температура воздуха и топлива, ^о С	20	20	20	50	50					
V, c Cr	0,70-0,80	I,25	4,5	21,0	36,0					
ακ	4,5	4,5	4,5	4,4	4,2					
η <mark>*</mark> η _{rmax}	0,998	0,994	0,989	0,983	0,977					

Таблица 4

Параметры	Марка/топлива									
,	TC-I (FOCT 10227-62)	T-I (POCT 10227-62)	T-6 (POCT 12308-66)	Д 3 (IOCT 4749-73)						
Температура воздуха и топлива, ^о С	от -40 до -43	от -37до -39	от -38до -40	от -3 5до -36						
ው,c Cr	5,0 - 8,0	12,0 - 16,0	40,0 - 60,0	75,0 - 80,0						
ακ	3,0;3,5;4,0	3,0;3,5;4,0	3,0;3,5;4,0	4,0;3,5;4,0						
η <mark>*</mark> Γ_max	0,77;0,78;0,79	0,76;0,77;0,77	0,73;0,74;0,7	4 0,65 ;0, 65 ;0, 6						

Таблица 5

Парамет-		Двигатели												
Ръ	ска тра;	с камерами сгорания традиционных схем с вращающимися фор- сунками										-		
	T 58-	- G £8	АИ	25	TB2	-117	РД-	3N	ΓT,	<u>д-1</u>	ГТ	Д-3Ф	ТВ	Д-10
V _{Bx.i}	1,0	1,075	I,0	0,9	1,0	U , 95	1,0	0,9	1,0	0,9	1,0	0,8	1,0	0,99
VBX.HOM														
Граница срыва пламени в области бедных смесей	77,0	m ax 79,0	44,7	max 45,6	66,0	max 66,0	74,5	74,0	63,0	67, 5	53,5	max 58,0	57,0	max 57, 5
Грэница срыва пламени в области богатых смесей	~	2,5	~	· I,5	~	- I,5	~	2,0	іі) « = пл го	іри =0,6 тамя орит	і 5 х : пл го	ри =0,67 амя рит		ри =0,72 ламя орит

На основных режимах работы всех анализируемых ГТД от холостого хода до взлетного режима с учетом приемистости при наборе или сбросе мощности коэффициент избытка воздуха находится в пределах от 3,0 до 15,0. Анализ приведенных данных показывает, что в области бедных сме-

Рис. 7. Срывные характеристики камер сгорания следующих двигателей: I-T58-CE8;2-AM-25;3-TB-2-II7; 4-РД-3M;5-TTД-I;6-ГТД-3Ф;7-ТВД-I0. V6x.i - сбъемный расход воздуха на входе по режимам, V6x.ном то же на номинальном режиме

сей значения $\alpha_{\rm срыв. 6 egh.}$ достаточно велики и превышают в несколько раз значения $\alpha_{\rm k}$ на всех эксплуатационных режимах.

В области богатых смесей вызвать срыв пламени в камерах сгорания с ВФ практически не удалось, пламя продолжало гореть и при забогащении $\alpha_{\kappa} = 0.65 - 0.72$. Большие велич. — забогащения не проверялись из-за опасения разрушения установки и из-за отсутствия реальных возможностей такого забогащения в эксплуатации.

В традиционных камерах забогащенный срыв происходит уже при α_{K} = =1,5 - 2,5, что значительно ограничивает возможности их форсирования.

Таким образом, камеры сгорания с вращающимися форсунками обладают характеристиками рабочего процесса, имеющими целый ряд преимуществ по сравнению с традиционными, что значительно повышает возможности безотказной эксплуатации газотурбинных двигателей.