Асланов В.С., Ледков А.С.

СПАСЕНИЕ БОКОВОГО БЛОКА РАКЕТОНОСИТЕЛЕЙ ТИПА «СОЮЗ»

В настоящее время в космонавтике используются ракегоносители, у которых при выведении на орбиту отделяемые ступени и боковые блоки отбрасываются и не спасаются. В работе ставится задача изучить возможность спасения и, при необходимости, разработать систему спасения бокового блока ракетоносителя типа «СОЮЗ».

Рассмотрим случай, когда боковой блок может двигаться только в плоскосги полета. Введем траекторную $OX_{\kappa}Y_{\kappa}$ и нормальную $OX_{g}Y_{g}$ системы координат (рис. 1). На боковой блок действуют сила тяжести и аэродинамическая сила, имеющая в системе координат $OX_{\kappa}Y_{\kappa}$ две составляющие: подъемную силу Y_{α} и силу сопротивления X_{α} . Запишем уравнения движения центра масс бокового блока:

$$\frac{d}{dt}V = -\frac{Cx_{\alpha} \cdot S}{m} \cdot \frac{\rho \cdot V^{2}}{2} - g \cdot \sin\theta,$$

$$\frac{d}{dt}\theta = \frac{Cy_{\alpha} \cdot S}{m} \cdot \frac{\rho \cdot V}{2} - \frac{g \cdot \cos\theta}{V} + \frac{V \cdot \cos\theta}{r},$$
(1)

$$\frac{d}{dt}h = V \sin \theta$$
, $\frac{d}{dt}l = V \cos \theta$, где V - скорость движения бокового блока относительно Земли, m – масса θ

где V - скорость движения бокового блока относительно Земли, m — масса бокового блока, l — дальность полета, h — высота полета, r - расстояние от центра Земли до центра масс бокового блока, S — площадь миделевого сечения, Cx_{α} — коэффициент силы лобового сопротивления, Cy_{α} — коэффициент аэродинамической подъемной силы, α — угол атаки, ρ — плотность воздуха, g — ускорение свободного падения.

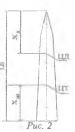
В процессе движения на боковой блок будут действовать момент M_s обусловленный действием нормальной аэродинамической силы N_{α_s} и демпфирующий мемент $Md_{\alpha_s}[1]$:

$$M = Cn_{\alpha} \cdot S \cdot \frac{\rho \cdot V^{2}}{2} \cdot (L_{6} - x_{\alpha} - x_{\alpha}),$$

$$Md_{\alpha} = m_{x}^{\overline{w_{x}}} \cdot \frac{\rho \cdot V}{2} \cdot S \cdot L_{\theta}^{1} \cdot \omega_{x},$$

где Cn_{α} –коэффициент нормальной аэродинамической силы N_{α} ; $m_{z}^{\overline{\omega_{z}}}$ - безразмерная вращательная производная коэффициента продольного момента; ω_{z} - угловая скорость бокового блока относительно его центра масс; L_{6} , $x_{u\tau}$ и x_{π} показаны на рисунке 2. Применяя теорему об изменении кинетического момента материальной системы, получим равенство:

$$J\bar{\vartheta} = Cn_{\alpha} \cdot \frac{\rho - V^2}{2} \cdot S(L_6 - x_{ur} - x_A) + m_z^{\overline{\omega}_z} \cdot \frac{\rho - V}{2} \cdot S \cdot L_6^2 \cdot \omega_z, \qquad (2)$$


где $9 = \alpha + \theta$ - угол тангажа, J - момент инерции.

Определим осевые перегрузки, действующие на боковой блок:

$$n_{\text{y}} = \frac{N_{\alpha}}{m \cdot g} = \frac{C n_{\alpha} \cdot S}{m \cdot g} \cdot \frac{\rho \cdot V^2}{2} \,, \quad n_{\text{x}} = \frac{T_{\alpha}}{m \cdot g} = \frac{C \tau_{\alpha} \cdot S}{m \cdot g} \cdot \frac{\rho \cdot V^2}{2} \,,$$

где Ct_{α} - коэффициент тангенциальной аэродинамической силы T_{α} .

Уравнения (1) и (2) описывают движение бокового блока в плоскости полета. Если скорость посадки будет слишком велика для благополучного приземления, то необходимо использовать систему торможения. В настоящее время самыми распространенными из устройств, обеспечивающих приземление грузов, являются парашютные системы и реактивные замедлители, которые и рассмотрим.

Боковой блок: ЦТ - центр масс, ЦД - центр давления

Расчет поверхности основного парадиота проводится из учета равенства силы сопротивления силе тяжести, действующей на систему:

$$F = \frac{2m_{cr} \cdot g}{Cp \cdot V_{cr}^2 \cdot \rho},$$

где F – площадь купола, V_{св} – скорость снижения, m_{ст} – масса бокового блока с парашютами, Ср – коэффициент сопротивления раскрытого парашюта (для круглых куполов приближенно равен 0,8). Соотношение для массы бокового блока с парашютами приведено в [2]:

$$m_{cm} = 0.82 \cdot b \cdot m \cdot V_{cm}^{-1} + m$$

где b - коэффициент, учитывающий размерности. Для использования основного парашнота необходимо знать допустимую скорость его ввода, определяемую из соотношения [2]:

$$V_{_{A}}=\sqrt{(\frac{V_{_{GR}}^{2}}{2}+\frac{\sqrt{F}}{k})}\pi_{_{PS}}-\frac{\sqrt{F}}{k}\;,$$

$$n_{\text{ny}} = \frac{1.21 \cdot k \cdot V_p^2 + \sqrt{F}}{k \cdot V_p^2 + \sqrt{F}}$$

где k – коэффициент, учитывающий конструктивные особенности купола; n_{ay} – перегрузка для парашюта; V_p - скорость, при которой сила сопротивления равна силе тяжести.

Если скорость движения системы превышает допустимую скорость $V_{\rm p}$ то необходимо использовать тормозной парациот. Будем проводить расчет тормозного парациота, снижающего скорость до значения $V_{\rm p}$, которое на 10% меньше допустимой скорости ввода основного парашюта, то есть $V_{\rm p}$ =0,9- $V_{\rm p}$. Площадь его поверхности равна:

$$F_T = 2 \cdot \frac{m_{er} \cdot g}{Cp \cdot \rho \cdot V_p^2} \cdot \frac{Cx_{\alpha} \cdot S}{Cp}$$

Коэффициент Ср для тормозного парашнота приближенно равен 0,4

Эксплуатация парашютов с площадью купола более 1000 м² значительно усложняется. Применение реактивного замедлителя позволяет уменьшить эту площадь. Рассмотрим замедлитель, представляющий собой твердотопливный реактивный двигатель. Пусть с момента включения двигателя парашют сразу теряет свою эффективность. Реактивный замедлитель доводит скорость снижения до нуля. Тогда его работа равна:

$$\mathbf{R} \cdot \mathbf{h}_{\mathrm{T}} = \frac{\mathbf{m}_{\mathrm{cr}} \cdot \mathbf{V}_{\mathrm{cH}}^{2}}{2} + \mathbf{m}_{\mathrm{cr}} \cdot \mathbf{g} \cdot \mathbf{h}_{\mathrm{T}},$$

где R-проекция тяги двигателя на вертикаль, h_T – путь торможения. Считая движение системы равнозамедленным и выражая из предыдущего соотношения h_T , найдем время работы двигателя:

$$t = \frac{V_{_{\text{cm}}}}{g \cdot (n_{_{\text{py}}} - 1)}, \quad n_{_{\text{py}}} = \frac{R}{m_{_{\text{cr}}} \cdot g},$$

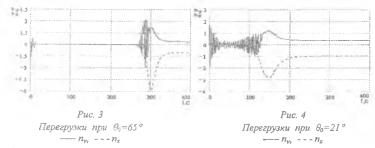
где пру-перегрузка при торможении. Импульс силы, действующей на систему, равен:

$$(R - m_{cr} \cdot g) \cdot t = m_{cr} \cdot V_{cH} .$$

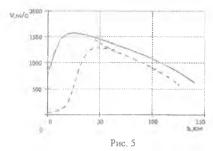
Разделив импульс тяги R-t на удельную тягу двигателя $P_{yд}$, получим массу необходимого толлива. Тогда масса всей тормозной системы равна:

$$m_{_{TC}} = \frac{0.82 \cdot b \cdot m}{V_{_{CR}}} + a \frac{n_{_{PY}}}{n_{_{PY}} - 1} \frac{V_{_{CR}} \cdot m_{_{CP}}}{g \cdot P_{_{YR}}},$$

где а -коэффициент, связывающий массу двигателя с массой топлива. Исходя из условий:


$$\frac{\partial m_{re}}{\partial V_{ck}} = 0, \qquad \frac{\partial^2 m_{re}}{\partial^2 V_{ck}} > 0,$$

найдем скорость снижения, при которой масса системы торможения будет минимальна:


$$V_{cii} = 2.66 \sqrt{\frac{P_{ya}}{a} (1 - \frac{1}{n_{py}})}$$

Приведем пример. Пусть боковой блок имеет следующие параметры: m=5000 кг, S=6 м², $m^{\omega_c}=0.15$, $L_6=20$ м, $x_{tr}=5$ м, $J=10^4$ кг м², в момент отделения: $h_0=43$ км, $V_0=1500$ м/с, $\theta_0=65^\circ$ и $\theta_0=75^\circ$. Ограничения: скорость приземления - 3 м/с, максимальные перегрузки - 3.

Расчеты показывают, что приземление произойдет со скоростью 92 м/с на 391 секунде. В процессе движения п_х превышает допустимое значение (рис. 3). Наибольшее влияние на перегрузки оказывают скорость и угол θ Изменяя значения θ₀, получим, что перегрузки приемлемы, когда угол принадлежит промежутку [0°:21°] (рис. 4).

Определим коридор, в пределах которого может изменяться скорость приземления бокового блока. Минимальная скорость приземления будет при его ориентация с углом атаки 90°, так как сила сопротивления при таком угле будет максимальной. Максимальная скорость состветствует ориентации блока с нулевым углом атаки. Расчеты показывают, что скорость приземления бокового блока может меняться в пределах от 42 м/с до 766 м/с (рис. 5). Поэтому очевидна необходимость применения системы торможения.

Коридор скоростей приземления.

Рассмотрим движение бокового блока с использованием системы торможения. Примем P_{yz} =250 с, α =2, θ_0 =20°, n_{py} =1,5, n_{ny} =3. Исходя из этого, находим: V_{cu} =15 м/с, F=480 м², V_{z} =87 м/с. Площадь тормозного парашюта для высоты 20 км равна 21 м². Масса тормозной системы составляет 450 кг, то есть менее 10% от массы бокового блока.

Таким образом, проведен расчет тормозной системы и подбор наивыгоднейщей тормозной системы с точки зрения ее наименьшей массы.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. А. А. Лебедев и Л. С. Чернобровкин. Динамика полета, 1962 г.
- 2. Р.А. Стасевич. Основы проектирования и расчета грузовых парашютных систем, Ленинград, 1969 г.

УДК 629.78

Афанасьев В.А., Дегтирев Г.Л., Мещанов А.С., Сиразетдинов Т.К.

АНАЛИТИЧЕСКОЕ КОНСТРУИРОВАНИЕ РИКОШЕТИРУЮЩЕЙ ТРАЕКТОРИИ ПОЛЕТА ТРАНСФОРМЕРУЮЩЕГОСЯ СНУСКАЕМОГО ЛЕТАТЕЛЬНОГО АППАРАТА МНОГОРАЗОВОГО ПРИМЕНЕНИЯ

Введение. Автоматизированное проектирование аэроконструкторских параметров и области допустимых начальных условий спускаемых летательных аппаратов (СЛА) предполагает получение общих решений на каждом характерном участке полета, например, аналитических решений для соответствующих математических моделей. В этой связи предлагается аналитическое конструирование рикошетирующей траектории полета СЛА, имеющего либо трансформированную осесимметричную компоновку (из двух ракет-носителей путем их стыковки днищами вращением вокруг оси шарнира при трансформации из пакетной двухосной компоновки после схода с орбиты) или фиксированную осесимметричную двуконусную компоновку возвращаемого орбитального аппарата (из двух состыкованных днищами