D_{l} ,	<i>d</i> ,	<i>R</i> ,	Доверительные интервалы		
ММ	ММ	MM	<i>p</i> = 0,9	<i>p</i> = 0,95	<i>p</i> = 0,99
15	5	0,3	(0,3547;0,3773)	(0,3519;0,3801)	(0,3455;0,3865)
		0,5	(0,3199;0,3927)	(0,3028;0,4099)	(0,2328;0,4867)
15	10	0,3	(0,3430;0,3763)	(0,3385;0,3809)	(0,3264;0,3929)
25	15	0,3	(0,3259;0,3706)	(0,3180;0,3785)	(0,2928;0,4037)
		0,5	(0,3073;0,3841)	(0,2890;0,4023)	(0,2150;0,4764)
		1,0	(0,3491;0,3963)	(0,3379;0,4075)	(0,2928;0,4530)

Таблица 4. Доверительные интервалы коэффициента $\overline{\Psi}_{\sigma}$ для полых цилиндрических образцов

Библиографический список

1. Павлов, В.Ф. О связи остаточных напряжений и предела выносливости при изгибе в условиях концентрации напряжений / В.Ф. Павлов // Известия вузов: Машиностроение. – 1986. – №8. – С. 29-32.

2. Павлов, В.Ф. Прогнозирование сопротивления усталости поверхностно упрочнённых деталей по остаточным напряжениям / В.Ф. Павлов, В.А. Кирпичёв, В.С. Вакулюк. – Самара: Издательство СНЦ РАН, 2012. – 125 с.

3. Павлов, В.Ф. Влияние на предел выносливости величины и распределения остаточных напряжений в поверхностном слое детали с концентратором. Сообщение І. Сплошные детали / В.Ф. Павлов // Известия вузов. Машиностроение. – 1988. – №8. – С. 22-26.

4. Павлов, В.Ф. Влияние на предел выносливости величины и распределения остаточных напряжений в поверхностном слое детали с концентратором. Сообщение II. Полые детали / В.Ф. Павлов // Известия вузов. Машиностроение. – 1988. – №12. – С. 37-40.

УДК 621.787:539.319

Вакулюк В.С., Сазанов В.П., Пилипив О.М., Злобин А.С., Синицын А.С.

ОПРЕДЕЛЕНИЕ КРИТИЧЕСКОЙ ГЛУБИНЫ НЕРАСПРОСТРАНЯЮЩЕЙСЯ ТРЕЩИНЫ УСТАЛОСТИ В ШЛИЦЕВЫХ ДЕТАЛЯХ

Известно, что шлицевые соединения относятся к высоконагруженным элементам конструкций, особенно в авиационных двигателях. Такие детали выходят из строя главным образом из-за повреждения рабочих поверхностей (износ, смятие), а также усталостного разрушения зубьев и тонкостенных валов, которому предшествует контактная коррозия (фреттинг-коррозия) [1]. Проведённое исследование выполнено в рамках работы по изучению влияния технологии изготовления полых шлицевых деталей (рис. 1) из сталей 12Х2Н4А и 30ХГСА на остаточные напряжения и сопротивление многоцикловой усталости. Все детали были изготовлены по стандартной технологии, принятой в авиационном двигателестроении. Шлицы имели эвольвентный профиль, получивший наибольшее распространение ввиду высокой надёжности, а также технологичности, и изготавливались фрезерованием методом обкатки на зубофрезерном станке. Параметры соединения: модуль зуба m = 1мм, количество зубьев z = 24. Центрирование деталей выполнено по боковым поверхностям шлицев.

Рис. 1. Размеры поперечного сечения шлицевой детали

По результатам испытаний отмечается, что во всех партиях деталей усталостная трещина зарождалась в неконтактируемой части шлиц у дна впадин и развивалась вдоль оси деталей, не изменяя направления, то есть по тем площадкам, на которых действуют максимальные окружные σ_{φ} напряжения. Это обстоятельство указывает на то, что разрушение деталей носило усталостный характер.

Оценка влияния остаточных напряжений на приращение предела выносливости шлицевых деталей $\Delta \tau_{-1}$ проводилась по критерию среднеинтегральных остаточных напряжений $\bar{\sigma}_{ocm}$ [2,3]:

$$\Delta \tau_{-I} = \overline{\psi}_{\tau} \cdot \left| \overline{\sigma}_{ocm} \right|, \tag{1}$$

где $\overline{\psi}_{\tau}$ – коэффициент влияния остаточных напряжений на предел выносливости при кручении по разрушению;

$$\overline{\sigma}_{ocm} = \frac{2}{\pi} \int_{0}^{1} \frac{\sigma_{\varphi}(\xi)}{\sqrt{1-\xi^2}} d\xi , \qquad (2)$$

 $\sigma_{\varphi}(\xi)$ – окружные остаточные напряжения в опасном сечении детали по толщине поверхностного слоя *a*; $\xi = a/t_{sp}$ – расстояние от поверхности образца до текущего слоя, выраженное в долях t_{sp} ; t_{sp} – критическая глубина нераспространяющейся трещины усталости, возникающей при работе детали на пределе выносливости.

Для практического определения приращения предела выносливости применительно к конкретному типу деталей необходимо было решить ряд частных задач: определить опасное сечение в месте концентратора, определить распределение остаточных напряжений по его глубине. В данном исследовании приводится решение задачи по определению опасного сечения при изгибе шлицевого зуба.

В дальнейшем будем рассматривать только шлицы с эвольвентным профилем. Исходя из условия, что центрирование соединения выполнено по боковым поверхностям, рассмотрены следующие варианты нагружения контактной поверхности шлицевого зуба:

1) вариант 1 – равномерное распределение нагрузки;

 вариант 2 – распределение по закону треугольника с максимальным значением в середине и нулевым на краях;

3) вариант 3 – распределение по закону треугольника с максимальным значением возле ножки и нулевым возле вершины;

4) вариант 4 – распределение по закону треугольника с максимальным значением возле вершины и нулевым возле ножки.

Для всех вариантов нагружения принималась средняя величина давления в контакте p = 10 МПа.

По результатам расчётов были построены графики (рис. 2) зависимостей окружных напряжений на поверхностях галтелей зуба (растянутой и сжатой) σ_{φ}^{noe} от угла θ , определяющего положение точки на поверхности галтельного перехода. Угол θ отсчитывается от точки перехода эвольвентной поверхности зуба в поверхность галтели с радиусом R = 0,4 мм в сторону поверхности впадины.

Проведённые расчёты для всех вариантов нагружения шлицевой детали показали, что опасное сечение во впадинах шлиц находится под углом 20-30 градусов. Согласно [3] величина критической глубины t_{sp} определяется только размерами опасного сечения детали D_{onac} :

$$t_{\kappa p} = 0,0216 \ D_{onac.}$$
 (3)

При таком подходе величина критической глубины *t_{кp}* нераспространяющейся трещины усталости будет равна 0,035 мм.

Исследования, проводимые на кафедре сопротивления материалов Самарского университета по определению коэффициента интенсивности напряжений (КИН), показали, что остановка трещины усталости связано с экстремальным значением КИН в поверхностном слое детали [4]. Зная график изменения КИН в этом слое можно определить величину t_{sp} .

На рис. З показана зависимость КИН от глубины l трещины усталости при нулевой внешней нагрузке при различном способе изготовления шлицевой детали. Как видно из графиков, независимо от способа получения шлиц, а значит и независимо от остаточных напряжений $t_{xp} = 0,041$ мм.

Рис. 3. Зависимость КИН от длины трещины усталости

Определение критической глубины нераспространяющейся трещины усталости позволяет применять критерий среднеинтегральных остаточных напряжений для вычисления предела выносливости упрочнённых шлицевых деталей.

Библиографический список

1. Биргер, И.А. Расчёт на прочность деталей машин / И.А. Биргер, Б.Ф. Шор, Г.Б. Иосилевич. – М.: Машиностроение, 1979. – 702 с.

2. Павлов, В.Ф. Прогнозирование сопротивления усталости поверхностно упрочнённых деталей по остаточным напряжениям / В.Ф. Павлов, В.А. Кирпичёв, В.С. Вакулюк. – Самара: Издательство СНЦ РАН, 2012. – 125 с.

3. Павлов, В.Ф. О связи остаточных напряжений и предела выносливости при изгибе в условиях концентрации напряжений / В.Ф. Павлов // Известия ВУЗов. Машиностроение – 1986. – №8. – С. 29-32.

4. Сургутанов, Н.А. Исследование влияния глубины трещины на коэффициент интенсивности напряжений в надрезанных и гладких пластинах / Н.А. Сургутанов // Вестник Самарского университета – 2017 – Т.16. – №1. – С. 176-185.

УДК 621.787:539.319

Вакулюк В.С., Павлов В.Ф., Туманов Д.В., Чуриков Д.С., Иванов А.Д.

ДЛИТЕЛЬНАЯ ПРОЧНОСТЬ И ПОЛЗУЧЕСТЬ МАТЕРИАЛА АМГ6 ПРИ НОРМАЛЬНОЙ И ПОВЫШЕННОЙ ТЕМПЕРАТУРАХ

Для определения характеристик длительной прочности и ползучести материала АМг6 использовались образцы, изготовленные из листового проката. Образцы вырезались как вдоль, так и поперёк направления прокатки. Их форма и размеры в мм представлены на рис. 1.

Рис. 1. Форма и размеры образцов

В соответствии с методикой ускоренных испытаний на длительную прочность исследования проводились при постоянных напряжениях и при различных температурах [1,2]. В данном исследовании при проведении экспериментов напряжения принимались равными 0,9 от предела прочности при температурах 20 и 80°С. Испытания образцов проводились на установках рычажного типа.