
106 

УДК 531.36, 629.7 

Куихада Пиокуинто Х.П. 

DESIGN OF A MULTI-LAYER PERCEPTRON FOR STEADY   

NONLINEAR AERODYNAMIC RESPONSE PREDICTIONS 
 

In recent years, deep learning algorithms have been widely used in the field of 

aerodynamics, either as prediction models or reconstruction of flow fields. In the field 

of aerodynamic response prediction for stationary flows, Multilayer Perceptrons (MLP) 

and Convolutional Neural Networks (CNN) have been the architectures of greatest in-

terest. Although CNN architectures have demonstrated better performance than MLP, 

they have been used for reverse design processes with great success. This paper pre-

sents an MPL architecture that was trained with profile geometries modeled with Bezi-

er-PARSEC parameters of existing profiles. The results obtained were relatively good, 

using a database of 800 elements, regression analyses demonstrated good predictions of 

lift, momentum and drag coefficients, using a single network to predict the three coeffi-

cients. 

Keywords: multi-layer perceptron, parameterization Bezier-PARSEC, KERAS 

TENSOR FLOW. 

INTRODUCTION 

Models based on Artificial Intelligence techniques that, being based on highly re-

liable data from physical systems, have achieved good reliability in aerodynamic appli-

cations. These surrogate models have the added advantage (efficiently and accurately of 

predicting solutions to nonlinear problems [1]. 

Neural networks aimed at modeling aerodynamic data have the following ap-

proaches: aerodynamic response prediction and reconstruction of flow fields. Aerody-

namic response predictions refer to the utilization of appropriate methods to build aero-

dynamic data models that can express the variation in aerodynamic response parame-

ters (forces or moment coefficients) with the design parameters, and finally output the 

predicted value of response parameters in the case of given design parameters. Studies 

in this field start from two aspects: those based on the flow state and those based on 

both aerodynamic shapes and the flow state.  

In steady aerodynamic response predictions, both Multi-layer Perceptron (MLP) 

Neural Networks and Convolutional Neural Networks (CNN) are feasible [2]. Yilmaz 

and German [3] believes that the approaches based on CNNs are better than those based 

on MLPs. Depending on the task the MLP and CNN architectures are feasible, but the 

key factor affecting the prediction accuracy is the high reliability of the original data in 

the training set. MLP-based models need to explore new structures to improve the accu-
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racy of prediction. This process is called model-oriented research. CNNs-based models 

should focus on how to merge the flow state and aerodynamic shapes. This process is 

called data integration-oriented research [2]. 

On the other hand, MPLs architectures have been sufficiently precise to be used in 

airfoil inverse design processes using shape optimization algorithms. Some of these ar-

chitectures are designed to predict one aerodynamic characteristic at a time. In 1994, 

Huang et. al. demonstrated that MLPs architectures working in conjunction with Euler 

method can predict the lift coefficient of a profile with Root Mean Square (RMS) error 

of 0,67% [4]. To improve the prediction response of MLPs and improve their function-

ality in reverse design processes, proposals have emerged such as the use of metaheu-

ristic optimization algorithms and improved profile parameterization techniques [5]. In 

more recent research, in order to achieve better accuracy in the MPLs, the works have 

focused on the variation of the hyper parameters (number of neurons, number of hidden 

layers, activation functions, type of optimizer, etc.) of the neural network [1], [6], [7]. 

Following these lines of research, the methodology developed by Moin et. al. is applied 

in this work to determine the architecture of an MLP [1].  
 

METHODOLOGY 

It was proposed to create a database based on the database of the University of Il-

linois at Urbana-Champaign [8], which has more than 1600 airfoils. 800 asymmetric 

airfoils were extracted from this database. In this test asymmetric profiles were used 

which were modeled with Bezier-PARSEC (BP) parameters (10 parameters describing 

the bending and thickness curves of the airfoil) and the evolutionary algorithm SHADE 

E-PSR [9], [10]. Each airfoil was analyzed in Open FOAM to obtain aerodynamic coef-

ficients (CL - lift coefficient; CD - drag coefficient, CM – moment coefficient), the simu-

lation was performed taking into account the Reynolds number equal to 3000000, and 

using the k-omega SST turbulence model. Aerodynamic coefficients were obtained on-

ly at an angle of attack of 0 degrees. A data mining technique of clustering Self-

Organizing Maps (SOM) was applied to visualize the grouping and diversity of indi-

viduals in the database; it is possible to do a parameter correlation analysis, to deter-

mine if any of the BP parameters are unnecessary [11]. 

All the evaluated neural networks were programmed with Python using the Tensor 

Flow - Keras libraries. The Mean Square Error (MSE) was maintained as the loss func-

tion, while the Root Mean Square Error (RMSE) and the R2 values were maintained as 

metrics to measure the performance of neural networks. The Rectified Linear Unit 

(ReLU) was used as the activation function in all layers. Each network was trained for 

200 epochs. 90% of the data were used for training, 5% for validation and 5% for test-

ing. All networks will have 10 input parameters and 3 output parameters. The number 



108 

of hidden layers, the number of neurons per layer and the activation function in the out-

put layer were the hyperparameters evaluated. Like Moin et. al., it started by evaluating 

the number of layers, and then the number of neurons per layer [1]. In the first three 

cases, the performance of the architectures was evaluated based on the number of hid-

den layers (see Table 1). Based on the best architecture, the number of neurons in the 

hidden layers is now modified (see Table 2). 

Table 1. Network performance due to changes in hidden layers 
 

Case Architecture 
R2 RMSE 

CM CX CY CM CX CY 

1 10-64-32-3 0,9511 0,8010 0,9770 0,0077 0,0095 0,0263 

2 10-64-32-16-3 0,9633 0,7928 0,9798 0,0070 0,0109 0,0244 

3 10-64-32-16-8-3 0,9501 0,7213 0,9695 0,0085 0,0110 0,0287 
 

Table 2. Neural network performance due to changes in neurons 

Case Architecture 
R2 RMSE 

CM CX CY CM CX CY 

2 10-64-32-16-3 0,9633 0,7928 0,9798 0,0070 0,0109 0,0244 

4 10-128-64-32-3 0,9604 0,8371 0,9737 0,0074 0,0125 0,0263 

5 10-256-128-64-3 0,9649 0,9178 0,9800 0,0073 0,0068 0,0247 

6 10-512-256-128-

3 

0,9715 0,9039 0,9770 0,0066 0,0066 0,0250 
 

CONCLUSION 

It was possible to verify that the proposed methodology for the determination of 

the hyperparameters of the neural network was correct for the database developed with 

the Bézier-PARSEC parameters. Unlike Moin, in this work, the analysis could not be 

performed by changing the size of the database. Despite the small size of the database, 

a multilayer perceptron with a prediction of a regular aerodynamic response can be cre-

ated. The R2 values for the three aerodynamic coefficients still need to be improved, 

currently a neural network intended for the prediction of aerodynamic coefficients must 

have R2 values equal to or greater than 0.99. The main idea of improving neural net-

work predictions is to increase the number of profiles in the database. The advantage of 

having a self-organizing map of the current database is that you know what types of 

profiles are needed to expand the database and maintain data diversity. 
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СТРУКТУРА И СВОЙСТВА ТЕЧЕНИЙ, ФОРМИРУЕМЫХ  

В ОКРЕСТНОСТИ ЦИЛИНДРИЧЕСКИХ ТЕЛ ПРИ ВОЗБУЖДЕНИИ  

ПОВЕРХНОСТНЫХ РАЗРЯДОВ НА ОБРАЗУЮЩЕЙ 
 

Известно [1, 2], что эффективное воздействие на пограничный слой при об-

текании тел открывает новые возможности управления не только динамикой по-

лета летательных аппаратов, но и работой их двигателей. Одним из способов воз-

действия на пограничный слой является возбуждения в нем плазмы поверхност-
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