Лежнев М.В.

ЗАДАЧА ОБТЕКАНИЯ И ФУНКЦИИ ТОКА ПРИСОЕДИНЕННОГО ВИХРЯ

Для задачи потенциального обтекания контура дано представление функции тока пра соединенного вихря, построен алгоритм численного решения задачи. Приведены картины в чений для присоединенного вихря в единичном круге.

1. Рассмотрим задачу плоского обтекания ограниченной области Q с достаточно гладкой границей S $\left(S \in C^{1+\alpha}, \ \alpha > 0\right)$ потенциальным потоком несжимаемой жидкости B неогораниченной области $Q' = R^2 \setminus Q$ требуется построить векторное поле скоростей $w(x) = \{u(x), v(x)\}, x = (x_1, x_2), \text{ удовлетворяющее условиям: a) } div w(x) = 0, \ rot w(x) = 0$ при $x \in Q'$, б) задана скорость на бесконечности $w(\infty) = \{u_0, v_0\}$, в) граница S есть линия тока $W(x) = \{u(x), v(x)\}, x = \{u(x), v($

Обтекаемую область по предположению Жуковского [1] можно заменить присоединенным вихрем, который порождает данное обтекающее течение, т.е. внешнее течение и присоединенный вихрь непрерывно продолжают друг друга через гладкие части границы.

Функция тока такого течения может быть представлена в виде [2]

$$\psi(x) = (u_0 x_2 - v_0 x_1) + \int_Q g(y) E(x - y) \, dy, \qquad (1)$$

где — гармоническая плотность присоединенных вихрей g(y) может быть как угодно приближена суммами вида $\sum c_m \gamma_m(y)$, $\gamma_m(y) = \ln \left| z^m - y \right|$, $\left\{ z^m \right\}_{m=1}^\infty \in Q^+$ — последовательность быть точек, удовлетворяющих условию единственности гармонических функций [2], E(x) фундаментальное решение уравнения Лапласа.

2. Алгоритм приближенного представлении функции тока. Условие непротеканив в) может быть переписано в виде $\psi(x) = const = b$ при $x \in S$. Вариационная задачи $\|\psi(x) - b\|_{L_2(S)}^2 \to \min_{\varepsilon}$ для нахождения коэффициентов c_m разложения $g(y) \approx \sum_{m=1}^M c_m y_m(y)$ $y \in Q$, приводит к СЛАУ Ac = d с матрицей Грама $A(M \times M)$, где ее элемен

3. Особенности численной реализации алгоритма. Функция тока $\psi(x)$ представляють суммой трех слагаемых $\psi(x) = u_0 \ \psi_U(x) + v_0 \ \psi_V(x) + \gamma \psi_B(x)$, где $\psi_U(x) = x_2 + \sum c_m^u \mu_m(x)$, $\psi_V(x) = -x_1 + \sum c_m^v \mu_m(x)$ и $\psi_B(x) = \sum c_m^b \mu_m(x)$, коэффициенты этих едетавлений получались решением задач $\|\psi_U(x)\|^2 \to \min_{c'}$, $\|\psi_V(x)\|^2 \to \min_{c'}$ и $\|\psi_U(x)\|^2 \to \min_{c'}$ и $\|\psi_U(x)\|^2 \to \min_{c'}$ и дением $\|\psi_U(x)\|^2 \to \min_{c'}$ динии уровня $\|\psi_U(x)\|^2 \to \min_{c'}$ и ением $\|\psi_U(x)\|^2 \to \min_{c'}$ диничном круге картина линий тока на рисунке 1), линии уровня $\|\psi_U(x)\| \to \infty$ бесциркуляционному обтеканию с $\|\psi_U(x)\| \to \infty$ обтеканию с $\|\psi_U(x)\|$

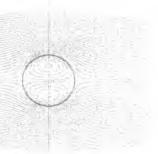


Рис.1. Линии уровня ψ_{II}

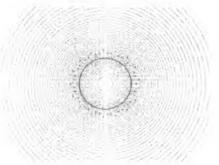


Рис. 2. Линии уровня ψ_{R}

4. Результаты численного эксперимента. Для обтекания со скоростью на бесконечести $w(\infty) = \{u_0, v_e\}$ и некоторой циркуляцисй, за которую отвечает лишь слагаемое $\psi_B(x)$, отина получается линейной комбинацией предыдущих трех с коэффициентами u_0 , v_0 и γ , отестевенно. В частности, для потока, набегающего под углом $\alpha = 30^0$ ($w(\infty) = 1$) и знанями $\gamma = -0.0002$ и $\gamma = -0.0004$, картины обтекания присосдиненного вихря в круге присоны на рисунках 3 и 4.

5. Рассмотрим внугренний вихрь с условием прилипания на границе. Представление (1) для фулкции тока не единственно, в частности, под интегралом к g(y) можно добавит любую функцию h(y) из ортогонального к G(Q) подпространства в $L_2(Q)$, что дает к $\psi(x)$ нулевую в Q+ добавку. Таким образом, общее представление для функции тока имеет вид

$$\psi_1(x) = (u_0 x_2 - v_0 x_1) + \int_O (h(y) + g(y)) E(x - y) dy,$$
 (2)

где $h(y) \in N(Q)$, $L_2(Q) - G(Q) \oplus N(Q)$ – разложение пространства $L_2(Q)$ в прямую суми гармопического и ортогонального ему подпространств. Функции $\psi(x)$ и $\psi_1(x)$ представляют одно и гоже течение в Q^+ , но они различны в Q^- В силу того, что в (2) $h(y) \in N(Q)$, а g(y) гармоническая, то при h(y) = 0 мы получаем присоединенный вихрь с минимальной завихренностью, порождающий внешнее течение $w(\infty) = \{u_0, v_0\}.$ Добавка $\psi_N(x) = \int\limits_{\mathcal{U}} h(y) E(x-y) \, dy$ порождает вихрь в Q с условием прилипания на границе.

Для построения h(y) из N(O) достаточно взять лапласиан от функции, равной нулю на границе вместе со своей нормальной производной. В частности, для функция $h_1(y) - \Delta \Big((1-R^2)^2 \Big)$, где $R^2 = {y_1}^2 + {y_2}^2$, линии тока функции $\psi_{N_1}(x) = \int\limits_{\Omega} h_1(y) E(x-y) \, dy$ прв ведены на рисунке 5.

С учетом введенных обозначений ψ_U , ψ_V , ψ_B и ψ_N функцию тока ψ_1 можно пред ставить в ниде $\psi_1=u_0\psi_U+v_0\psi_U+\gamma\psi_B+R\psi_N$, где R — некоторая константа, отвечающая π интепсивность внутреннего вихря функции ψ_M .

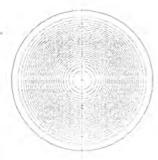


Рис.5. Линии уровня $\psi_{N1}(x)$

Phc. 6. $\alpha = 30^{\circ}$, $\gamma = -0.0002$. R=1

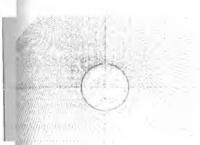


Рис. 7. $\alpha = 30^{\circ}$, $\gamma = -0.0008$. R=2

Рис. 8. α=30°, γ= -0.0008. R=5

Для внутреннего вихря $\psi_{N_1}(x)$ с интенсивностью $R_1=1$ и значениями $\alpha=30^{\circ}$ $|\psi(\infty)|=1$) и $\gamma=-0.0002$ картина приведена на рисунке 6, с интенсивностями $R_1=2$ и $R_2=5$ при $\alpha=30^{\circ}$ и $\gamma=-0.0008$ картины течений приведены на рисунках 7 и 8.

Во всех случаях число базисных точек M бралось равным 50, располагались они на M окружностях вокруг Q, изображены они на рисунке 2. Алгоритм реализован на языке M праммирования Fortran, графика — на языке Pascal. Для счета интегралов с особенностями M пользовались подпрограммы пакета MS IMSL.

Работа поддержана грантом РФФИ-Юг № 03-01-96587.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

Лойцянский Л.Г. Механика жидкости и газа — М.: Наука, 1978.

. Пежнев В.Г., Данилов Е.А. Задачи плоской гидродинамики — Краснодар: КубГУ, 2000.