УДК 629.78

Морозов Л.В.

УПРАВЛЕНИЕ ВЕРТИКАЛЬНЫМ ПЕРЕМЕЩЕНИЕМ БУКСИРУЕМОГО ЛЕТАТЕЛЬНОГО АППАРАТА НА ТРОСОВОЙ СВЯЗИ С САМОЛЁТОМ-НОСИТЕЛЕМ

 Рассматриваются перемещения летательного аппарата, буксируемого на гибком упругом тросе переменной массы равномерно и горизонтально летящим самолётом
– носителем. Перемещения в вертикальной плоскости возможны за счёт изменения силы лобового сопротивления аппарата, изменения массы троса и его длины. Задача перемещения троса возникает, например, при осуществлении стыковки троса с летящим объектом для его последующей буксировки в заданный район посадки.

Рассматривается гипотетический буксируемый летательный аннарат (БЛА) массой т в форме тела вращения диаметром D с затупленной носовой частью и управляемой конической поверхностью в хвостовой части с образующей l (табл. l) и переменным углом раскрытия δ ∈ [δ_{min}, δ_{max}] (табл. 2).

Таблица 1. Параметры аппарата

m,	D,	1,	L _T *	d _{r,}	b _{T.}	h ₀ ,	h _K ,	M_0	M _K
KΣ	М	M	м	MM	MМ	KМ	KM		
20,0	0,06	0,05	500,0	5,0	1,0	0,5	18,0	0,3	0,9

Таблица 2. Граничные значения параметров

δ _{min,}	δ _{max,}	L _{T man} ,	L _{T max,}	k _{min}	kmax	δ,
град	град	M	М			М
10,0	80,0	100,0	500,0	0,0	1,0	0.01

Трос соединён с аппаратом в его центре масс, что обеспечивает аппарату нулевой угол атаки и статическую устойчивость при любых скоростях и высотах полёта носителя (рис. 1). Трос переменной массы представляет собой трубку длиной L_T с внешним диаметром d_T и стенками постоянной толщины b_T (табл. 2). Внутренняя полость троса на конечном отрезке длиной L_{TR} = kL_T в зависимости от параметра k \in [k_{min}, k_{max}] заполнена балластом в виде шариков, свободно перемещающихся под действием силы тяжести при открытии клапанов в начале или конце троса. Координаты аппарата $\xi_L \ge 0$ и $\zeta_L \ge 0$ задаются в связанной с носителем системе координат О $\xi\zeta$ с осью О ξ вдоль вектора скорости воздушного потока V и осью О ζ вдоль вектора ускорения силы тяжести g (рис. 1) и определяются в результате интегрирования системы дифференциальных уравнений троса [1]

$$\frac{d\mathbf{x}}{ds} = f(\mathbf{x}, q, u), \tag{1}$$
$$\mathbf{x} = (\mathbf{T}, \alpha, \xi, \zeta), \mathbf{q} = (\mathbf{q}_{g}, \mathbf{q}_{n}, \mathbf{q}_{v}), \mathbf{u} = (\delta, \mathbf{L}_{\mathsf{T}}, \mathbf{k}), \\\mathbf{x}_{0} = (\mathbf{T}_{0}, \alpha_{0}, \xi_{0}, \zeta_{0}), \mathbf{x}_{\mathsf{I}} = (\mathbf{T}_{\mathsf{I}}, \alpha_{\mathsf{I}}, \xi_{\mathsf{I}}, \zeta_{\mathsf{I}}), \end{aligned}$$

где x – вектор фазовых координат троса, q – вектор погонных нагрузок на трос, u – вектор управления, s – координата произвольной точки троса вдоль его длины, x₀, x_L – векторы граничных условий в начале и в конце троса.

Рис. 1. Схема тросовой системы

В состав вектора х входят величина силы натяжения T(s), угол атаки гроса $\alpha(s)$, горизонтальная $\xi(s)$ и вертикальная $\zeta(s)$ координаты точки троса. В состав вектора q входят погонная сила тяжести $q_g(s)$, погонная аэродинамическая нормальная сила давления $q_u(s)$ и погонная аэродинамическая сила трения $q_v(s)$ [2].

Граничные условия уравнений (1) на концах троса заданы частично

$$\label{eq:generalized_states} \begin{split} \xi_0 &= 0, \\ T_L &= (P^2 + X_a^{-2})^{0.5}, \ \alpha_L = arctg(P/X_a), \ P = mg, \ X_a = c_{xa}q_x S_{M}, \ S_M = \pi D^2/4, \end{split}$$

где Р – сила тяжести аппарата, Х_а – сила лобового сопротивления аппарата. с_{ха} – коэффициент лобового сопротивления, q_x – скоростной напор невозмущённого потока, S_M – площадь миделя аппарата.

Недостающие граничные условия в конце троса ξ_L и ζ_L являются решением соответствующей двухпараметрической краевой задачи [1].

Координаты конца троса ξ_L и ζ_L определяют вертикальные $\Delta h = -\zeta_L \leq 0$ и горизонтальные $\Delta L = -\zeta_L \leq 0$ смещения аппарата относительно носителя, зависящие от высоты h и числа Maxa M полёта, длины L_Γ и диаметра d_T троса, массы аппарата m и па-

раметров управления $u = (\delta, L_T, k)$:

$$\Delta h = \Delta h(h, M, L_T, d_T, m, u), \quad \Delta L = \Delta L(h, M, L_T, d_T, m, u)$$

Траекторные параметры W = (h, M) ∈ F являются координатами точек дозвуковой части F области манёвра носителя (рис. 2), (табл. 1):

$$F = \{h : h \in \Delta H; M : M \in \Delta M\}, \quad \Delta H = [h_0, h_k], \quad \Delta M = [M_0, M_k]\}$$

Граница этой части G(F) состоит из одного криволинейного участка A(F) с переменными параметрами $W^A = (h^A, M^A)$ и двух прямолинейных B(F) и C(F) с постоянными значениями параметров $M^B = M_K$ и $h^C = h_0$, соответственно.

Рис. 2. Область манёвра носителя

Ставится задача формирования программы управления величиной вертикального смещения аппарата u(Δh) = ($\delta(\Delta h)$, L_T(Δh), k(Δh)) в заданных пределах $\Delta h \in \Delta_h$ при фиксированном горизонтальном смещении $\Delta L(\Delta h) = \Delta L^*$ и ограничениях на управление u $\in U$.

2. При заданных параметрах троса и аппарата с минимальным углом раскрытия конуса δ_{min} (табл. 1, 2) на рис. 3 для всего рассматриваемого диапазона чисел Маха $M \in [M_0, M_K]$ приведены предельныс нижние вертикальные $\Delta h^A(k_{max})$ смещения конца троса с полным балластом ($k = k_{max}$) при движении носителя по границе A(F) и наибольшие значения вертикальных предельных верхних смещений Δh^C_{max} (k_{min}) при максимальном числе Маха M_K для пустотелого троса ($k = k_{min}$) при движении носителя на постоянной высоте выше минимальной не (h_0, h_K] вертикальные смещения троса $\Delta h(k_{max})$ с полным балдастом $k = k_{max}$ и с минимальным углом раскрытия конуса $\delta = \delta_{mun}$ образуют нижного

границу смещений, возрастающих при увеличении числа Маха на интервале между точкой $W^A = (h^A, M^A), b^A \approx h$ на границе A(F) и максимальным значением M_K . Наименьшая величина смещений на нижней границе $\Delta h_{min}(k_{max})$ совпадает с нижним предельным вертикальным смещением $\Delta h^A(k_{max})$ в точке W^A , а наибольшая величина $\Delta h_{max}(k_{max})$ достигается ири максимальном числе Маха.

При постоянной высоте полёта носителя во всём возможном диапазоне чисел Маха для этой высоты вертикальное перемещение аппарата между нижней границей смещений $\Delta b^A(k_{max})$ и произвольным смещением величиной $\Delta b(\Delta L^*) \in \Delta_{h_c}$ $\Delta_{h^-} = [\Delta h^A(k_{max}), \Delta h^C_{max}(k_{min})]$ при фиксированной величине продольного смещения $\Delta L^* = \text{const}$ осуществляется при оптимальных значениях параметров управления $u_{opl}(\Delta h) = (\delta_{opl}, L_{Topl}, k_{opl})$. Оно формируется в результате одного или двух последовательных этапов двухпараметрического управления с переменным составом управляющих параметров.

На первом этапе параметрами управления являются угол раскрытия конуса б и длина троса L_T при постоянном максимальном значении коэффициента заполнения троса балластом: $k = k_{max}$. Управляющие параметры б^{*} и L_T^* являются результатом минимизации целевой функции рассогласования J(u) с ограничениями

$$u^{*} = \arg\min_{u \in U} J(u), \qquad (2)$$

$$u = (\delta, L_{T}, k_{\max}), u^{*} = (\delta^{*}, L_{T}^{*}, k_{\max}), J^{*} = J(u^{*}), \qquad U = \{\delta : \delta \in \Delta_{\delta}; L_{T} : L_{T} \in \Delta_{L_{T}}, k : k \in \Delta_{k}\}, \qquad \Delta_{\delta} = [\delta_{\min}, \delta_{\max}], \Delta_{L_{T}} = [L_{T\min}, L_{T\max}], \Delta_{k} = [k_{\min}, k_{\max}], \qquad J(u) = |\Delta h(u) - \Delta h^{*}| + |\Delta L(u) - \Delta L^{*}|, \qquad \Delta h = \Delta h(h, M, L_{T}, d_{T}, m, u), \Delta L = \Delta L(h, M, L_{T}, d_{T}, m, u).$$

При достижении минимумом целевой функции заданной точности $J^* \leq \epsilon$ формируется оптимальное управление: $\delta_{opt} = \delta^*$, $L_{Topt} = L_T^*$, $k_{opt} = k_{max}$.

Второй этап управления проводится при двух условиях – равенстве угла δ^* граничному значению δ_{max} и превышении минимумом J^{*} заданной точности. Параметрами управления в этом случае являются длина троса L_T и коэффициент k при постоянном максимальном значении угла раскрытия управляющего конуса $\delta = \delta_{max}$. Управляющие параметры L_T^{**} и k^{***} являются результатом минимизации целевой функции рассогласования J(u) с ограничениями

$$u^{**} = \arg\min_{u \in U} J(u), \qquad (3)$$

$$u = (\mathcal{O}_{\max}, \mathcal{L}_T, \mathcal{K}), \ u = (\mathcal{O}_{\max}, \mathcal{L}_T, \mathcal{K}), \ \mathcal{J} = \mathcal{J}(u).$$

10

При достижении минимумом целевой функции заданной точности $J^{**} \leq \epsilon$ формируется оптимальное управление: $\delta_{opt} = \delta_{max}$, $L_{Topt} = L_T^{**}$, $k_{opt} = k^{**}$.

На рис. 4 приведены зависимости параметров управления δ_{opt} , L_{Topt} , k_{opt} от величины вертикального смещения Δh при поддержании постоянного продольного смещения $\Delta L^* = -478,121$ м при полёте носителя на высоте 16000 м с числом Маха 0,7. Результаты показывают, что при изменении угла раскрытия конуса в допустимых пределах масса троса остаётся неизменной, а при достижении ограничения становится перемевной.

смещением апнарата

Библиографический список

- Морозов, Л.В. Условия гарантированной сходимости численного решения краевой задачи о равновесном состоянии гнбкого троса воздушного буксира [Текст]/ Л.В. Морозов // Известия ВУЗов. Авиационная техника. – 2003. – №3. – С. 16-19.
- Шлихтинг, Г. Теория пограничного слоя [Текст]/ Г. Шлихтинг. М.: Наука, 1974. 712 с.