Коптев А.Н., Горяннов С.Б.

ТЕХНИЧЕСКАЯ ДИАГНОСТИКА НЕПРЕРЫВНЫХ ОБЪЕКТОВ

Пусть объект представлен в виде функциональной схемы, состоящей из N связанных между собой блоков

Выходные сигналы каждого блока зависят от входных сигналов. Если какой-либо входной (выходной) сигнал характеризуется несколькими параметрами, то каждый из этих параметров будем представлять отдельным выходом (входом).

Считаем, что из множества значений каждого входного и выходного параметра всегда можно выделить подмножество их допустимых значений. Значение входа или выхода блока назовем *допустимым* (недопустимым), если значение соответствующего параметра принадлежит (не принадлежит) подмножеству допустимых значений.

Обозначим внешние входы блока P_t (r=1, ..., N) объекта через x_{tl} , x_{t2} , ... его внутренние входы, являющиеся выходами других блоков, — через y_{tl} , y_{t2} ,... и входы через z_{tl} , z_{t2} ... z_{tRt} . Обозначим логическое высказывание «значение входа допустимо» символом входа x (или y). Тогда символы входов можно считать логическими входными переменными, принимающими значение «истинно» (1), если значения соответствующих им входов допустимы, и значение «ложно» (0) — в противном случае. Аналогично символы выходов можно считать логическими выходными функциями, принимающими значение 1, если значения соответствующих им выходов допустимы, и 0 — в противном случае.

При таком рассмотрении функции выходов блоков являются булевыми функциями.

Перебсрем все возможные сочетация значений входов (входные наборы) исправного блока P_i и определим для каждого такого сочетания значение выхода z_{ij} ($i=1,\ldots,k_i$). Полученную таким образом булеву функцию можно записать в виде ее совершенной дизъюнктивной нормальной формы [1]. Назовем эту функцию функцией условий работы блока по выходу z_{ij} и обозначим символом F_{ij} . Для нее известными методами [2] можно получить дизъюнктивную частную нормальную минимальную форму

Для большинства исправных непрерывных объектов булевы функции условий работы блоков являются монотонными. Для монотонных функций частная минимальная форма единственна. В дальнейшем считаем, что F_n представлена такой минимальной формой

В результате минимизации функций F_{il} ..., F_ik_i для каждого из выходов z_{il}, z_ik_i бло-ков P_i получим совокупность существенных входов. В логической модели объекта каждый блок P_i будем представлять блоками Q_{il}, Q_ik_i , каждый с одним выходом z_{ij} и с s_j входами, существенными для выхода z_{il} .

Назовем логическую модель правильной, если для любой пары блоков

- характерной тем, что выход одного из блоков является входом другого, выполняется условие: подмножества допустимых значений соответственно совпадают,
- имеющей одноименные входы, выполняется условие: подмножества недопустимых значений входов совпадают.

Тогда для правильной логической модели символы внутренних входов можно заменить символами связанных с ними выходов (при условии, что в связях между блоками нет задержек). Перенумеруем блоки логической модели и обозначим их символами Q_1,\dots,Q_n , где $n=\sum_{i=1}^N k_i$. На этом завершается построение логической модели объекта.

В общем случае каждому исходному блоку P_i в функциональной схеме соответствует подмножество блоков логической модели из { Q_1, \dots, Q_n } В частном случае логическая модель может совпадать с функциональной схемой объекта.

Построенную логическую модель можно рассматривать как некоторое логическое устройство, при контроле которого допустимое множество входных наборов содержит один непрерывный набор 1. . 1 Это значит, что при контроле непрерывного объекта на последний подаются входные сигналы, которые находятся в допуске.

Для анализа логической модели может быть использована общая методика анализа комбинаторных устройств. Однако ряд особенностей логической модели (монотонность функций условий работы блоков, ограниченный характер неисправностей и др.) позволяет существенно упростить процесс анализа.

Не нарушая общности, дальнейшее изложение проведем на примере логической модели, изображенной на рис. 1.

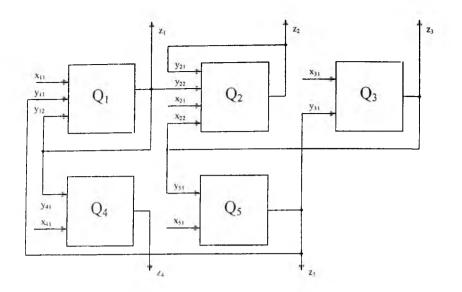


Рис 1. Пример логической модели

Предположим, что частная минимальная форма F_i ($i=1,\ldots,n$) состоит из одного члена, являющегося конъюнкцией внешних и внутренних переменных, τ е имеет вид

$$F_{i} = x_{i_{1}}...x_{i_{l_{i}}} \cdot y_{i_{1}}...y_{i_{p_{i}}}.$$

Все возможные неисправности блока Q_i можно разбить на два класса. К первому классу относятся технические неисправности, которые приводят к появлению выхода $z_i = 0$ вместо ожидаемого (соответствующего исправному блоку) выхода $F_i = 0$ в $z_i = 1$.

Назовем *правильным* блок, который сопоставляет значение z_i со значениями F_i в соответствии с таблицей 1.

Таблица 1		Таблица 2			Таблица 3		
<i>F</i> ₁	Z _I	F,	z,	F_t	Qı	Z,	
1 0	1 0	1 0	0	1 0 1 0	1 0 0	1 0 0	

Неправильный блок осуществляет сопоставление в соответствии с таблицей 2.

Для большинства непрерывных объектов понятие правильного блока совпадает с понятием исправного блока, а понятие неправильного блока — с понятием неисправного блока.

Если составить логическое высказывание «блок Q правильный и обозначить его символом Q (Q=1 или 0), то в соответствии с таблицами 1 и 2 можно составить таблицу 3, из которой следует, что z_i можно рассматривать как коньюнкцию переменных F_i и Q_i :

$$z_i = O_i \cdot F_i$$

Физически это соответствует тому, что выход z_i блока Q_i будет допустимым только в том случае, когда все его входы допустимы $(F_i=1)$ и блок Q_i исправный.

Для того, чтобы блок Q, был правильным (исправным). достаточно, чтобы высказывание z, было истинным (выход z, был допустимым).

Обратимся к рис. 1 и выпишем значения функций условий работы блоков:

$$F_{1} = x_{1} \cdot z_{1} \cdot z_{5};$$

$$F_{2} = x_{1} \cdot z_{1} \cdot z_{2} \cdot z_{3};$$

$$F_{3} = x_{1} \cdot z_{5};$$

$$F_{4} = x_{4} \cdot z_{1};$$

$$F_{5} = x_{5} \cdot z_{3}.$$
(1)

Составим равенство типа $z_i = Q_i \cdot F_i$:

$$z_{1} = Q_{1} \cdot x_{1} \cdot z_{1} \cdot z_{5};$$

$$z_{2} = Q_{2} \cdot x_{1} \cdot z_{1} \cdot z_{2} \cdot z_{3};$$

$$z_{4} = Q_{4} \cdot x_{4} \cdot z_{1};$$

$$z_{5} = Q_{5} \cdot x_{5} \cdot z_{5};$$
(2)

Считаем, что правильная логическая модель функционирует правильно, если все ее блоки правильные. Для того чтобы объект функционировал правильно (был исправным), достаточно, чтобы логическое высказывание:

$$z_1 \cdot z_2 \cdot z_n \tag{3}$$

было истинным

Покажем, как найти минимальную совокупность выходов, истинность значений которых влечет за собой истинность высказывания (3).

Составим в соответствии с (2) квадратную матрицу (таблица 4), число строк и столбцов которой соответствует выходам z_1 , z_n . Заполним матрицу столбцов следующим образом. В клетках главной диагонали проставим знаки \otimes . Затем возьмем первое равенство системы функций (2) и отметим знаками \times (без кружка) в первой строке матрицы те столбцы, в которых записанные входы содержатся в правой части первого равенства системы (2).

В рассматриваемом примере такими выходами являются z_1 и z_5 . Просмотрим первую строку матрицы слева направо и найдем первый знак \times . Обратимся к тому уравнению системы (2), которому соответствует столбец с найденным знаком \times . В данном случае это пятое уравнение системы (2). Обведем кружком (в примере переходный знак) знак \times в столбце z_3 и отметим знаком \times столбец z_3 в той же строке (таблица 4).

Таблина 4

	21	z ₂	Z3	Z.4	25
Z į	8		×		×
z ₂		8		><	/
Z_{β}			8		
ī,			1	8	
Zş					8

Спова найдем первый слева знак \times и будем повторять описанную процедуру до тех пор, пока в строке не останется ни одного знака \times (без кружка). После этого перейдем к следующей строке и т.д. В результате получим окончательную таблицу 5. Очевидно, что число шагов описанной процедуры (под шагом подразумевается один просмотр какого-либо уравнения в системе (2)) не может превышать n(n-1).

Таблина 5

	z_i	z_2	Z _j	24	Zs
z,	8		8		8
Z 2	8	8	⊗		8
Z3			8		
24	8		8	8	8
Z5			8		8

Теперь задача определения минимального числа выходов состоит в выборе минимальной совокупности таких строк, чтобы в каждом столбце имелось минимальное число знаков \otimes (лучше всего один знак на пересечении со строкой). Для рассматриваемого примера минимальная совокупность состоит из строк z_2 и z_4 .

Истинность полученной описанным образом минимальной совокупности выходов является необходимым и достаточным условием истинности высказывания (3).

В простейших случаях определение минимальной совокупности строк легко осуществить путем простого просмотра таблицы. В более сложных случаях следует применять известную методику построения частных минимальных форм при минимизации булевых функций [3]. При получении нескольких равноценных по числу строк вариантов минимальных совокупностей следует выбирать ту из них, которая наиболее удобна для технической реализации.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Новиков П.С., Элементы математической логики, Физматгиз, 1959.
- 2. Колдуэл С., Логический синтез релейных устройств. Изд-во иностранной литературы, 1962.
- 3. Mc Cluckey, Minimization of Boolean Function, Bell Syst. Journ., 1956, v. 35, No.