УДК 533.77

Пияков А.В., Семкин Н.Д., Помельников Р.А.

РАСЧЕТ ЭЛЕКТРОСТАТИЧЕСКОГО ПОЛЯ МЕЖДУ ТОКОВЕДУЩИМИ ШИНАМИ УСКОРИТЕЛЯ ВЫСОКОСКОРОСТНЫХ ПЫЛЕВЫХ ЧАСТИЦ.

При построении конструкции элекгростатического ускорителя для моделирования мекрометеороидов возникает вопрос о подводе высокого напряжения к ускоряющим электродам. Для проектируемого ускорителя высокоскоростных пылевых частиц возможны два вариаята подвода напряжения к ускоряющим электродам (рис.1). В [1] описана конструкция ускорителя для моделирования микрометеорондов, в которой для исключения дефокусирующего влияния токоведущих шин на частицу используются специальные экрачы для каждого ускоряющего промежутка. Такое решение существенно усложняет конструкцию. К тому же, как отмечено в [1], при работе ускорителя на расчетном напряжении на экранах возникают пробои.

Для решения данной проблемы предлагается конструкция ускорительного тракта ускорителя высокоскоростных нылевых частиц с четырьмя токоведущими шинами.

Рис. 1 - Варианты подключения ускоряющих электродов

На рыс J.a. показан вариант с двумя, а на рис. J.б – с четырьмя токоведущими шинами. Рассмотрям картину поля токоведущих шин для первого и второго случая.

Рис.2 - Двухпроводная линия

Предположим, что токоведущие шины представляют собой цилиндрические провода. Тогда для двухпроводной конструкции (рис. 2), согласно [2], напряжение между проводами равно :

$$U = \frac{\tau}{\pi \epsilon E_0} \ln \frac{h + H}{r},$$
 (1)

где U – напряжение между проводами; τ – линейная плотность заряда на токоведущей шине; ε – диэлектрическая проницаемость окружающей среды (для вакуума ε^{1}); ε_{0} – диэлектрическая постоянная ($\varepsilon_{0} = 8,85 \cdot 10^{-12} \, \Phi/M$); H – половина расстояння между центрамн токоведущих шин; r – радиус токоведущих шин; h – расстояние определяющее положение электростатических осей проводов ($h = \sqrt{H^{2} - r^{2}}$).

Согласно [2] электростатическое поле в точке А для варианта двухпроводной линии можно определить по формуле :

$$\vec{E} = \frac{i}{2\pi\varepsilon\varepsilon_0} \left[\left(\frac{\cos\beta_1}{\alpha_1} + \frac{\cos\beta_2}{\alpha_2} \right) \vec{i} + \left(\frac{\sin\beta_1}{\alpha_1} - \frac{\sin\beta_2}{\alpha_2} \right) \vec{j} \right],\tag{2}$$

где
$$a_1 = \sqrt{(h+x)^2 + y^2}$$
, $a_2 = \sqrt{(h-x)^2 + y^2}$, $\beta_1 = Arcig\left(\frac{y}{h+x}\right)$, $\beta_2 = Arcig\left(\frac{y}{h-x}\right)$.

Выражая из (1) линейную плотность заряда на токоведущей шине и подставляя ее в (2), получаем:

$$\overline{E} = \frac{U}{\ln((h+H)/r)} \left[\left(\frac{\cos\beta_1}{\alpha_1} + \frac{\cos\beta_2}{\alpha_2} \right) \cdot \overrightarrow{i} + \left(\frac{\sin\beta_1}{\alpha_1} - \frac{\sin\beta_2}{\alpha_2} \right) \cdot \overrightarrow{j} \right].$$
(3)

Для раднуса токоведущих шин r = 0,005 м, расстояния H = 0,2 м в напряжения U = 40 кB зависимость напряженности электростатического поля на оси ОХ показана на рис.3, а зависимость напряженности электростатического поля на оси ОУ показана на рис.4.

Следует отметить, что вектора электростатического поля для точек, принадлежащих осям ОХ и ОУ, параллельны соответствующим осям.

Как видно из зависимости, приведенной на рис.3, величина напряженности электрического поля на оси ускоряющих электродов минимальна и составляет 105 кВ/м (напряженность электростатического поля между ускоряющими электродами составляет примерно 4 кВ/м). Следовательно, данной составляющей поля можно пренебречь. Но поле, отклоняющее частицу от оси цилиндрических электродов (оси ускоряющего тракта), максимально на этой оси (рис.4).

Легко подсчитать, что "тяжелая" частица с удельным зарядом 50 Кл/кг отклонится на величину 0,01 м (радиус цилиндрического электрода проектируемого ускорителя) за 2 мкс, что неприемлемо, так как движение частицы по ускоряющему тракту длиной 1,81 м (26 электродов длиной 0,06м) с удельным зарядом 50 Кл/кг занимает около 1,5 мс.

Рис.3 - Зависимость напряженности электростатического поля на оси ОХ

Рис.4 - Зависимость напряженности электростатического поля на оси ОУ

Таким образом, использование конструкции с двумя токоведущими шинами предполагает использование специальных эхранов или уменьшение дляны ускоряющего тракта.

Рис. 5 - Четырехпроводная токоведущая шина

Рассмотрим конструкцию с четырьмя токоведущими шинами (рис. 5). В данном случае поле можно определить как суперпозицию полей, создаваемых каждой из токоведущих щин:

$$\vec{E} = \frac{U}{\ln\left(\frac{h+H}{r}\right)} \left[\left(\frac{\cos\beta_1}{a_1} + \frac{\cos\beta_2}{a_2} - \frac{\cos\beta_3}{a_3} - \frac{\cos\beta_4}{a_4}\right) + \left(-\frac{\sin\beta_1}{a_1} + \frac{\sin\beta_2}{a_2} + \frac{\sin\beta_3}{a_3} - \frac{\sin\beta_4}{a_4}\right) + j \right],$$
(4)

где

$$a_{1} = \sqrt{(h+x)^{2} + (h-y)^{2}}, a_{2} = \sqrt{(h-x)^{2} + (h-y)^{2}}, a_{3} = \sqrt{(h+x)^{2} + (h+y)^{2}},$$
$$a_{4} = \sqrt{(h-x)^{2} + (h+y)^{2}}, \beta_{1} = \operatorname{Arctg}\left(\frac{h-y}{h+x}\right), \beta_{2} = \operatorname{Arctg}\left(\frac{h-y}{h-x}\right),$$

$$\beta_3 = \operatorname{Arctg}\left(\frac{h+y}{h+x}\right), \beta_4 = \operatorname{Arctg}\left(\frac{h+y}{h-x}\right)$$

Зависимость напряженности поля вдоль оси ОХ от координаты показана на рис 6

Как видно из рис.6, напряженность электростатического поля в пределах объема ускорительного тракта не превышает 20 В/м, что почти не оказывает влияния на смещение ускорязмой частицы. Таким образом, без применения специальных элементов экранирования ускоряющих промежутков, использование двухпроводной конструкции токоведущих шин является невозможным.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

 Слеттери, Беккер, Хамерменш, Рой. Линейный ускоритель для моделирования микрометеоритов. /Приборы для научных исследований., 1973, т.44, №6.

2. Говорков В.А. Электрические и магнитные поля. М.: Энергия, 1968.

3. А.А. Детлаф, Б.М. Яворский. Курс физики. М.: В.Ш., 2000.