Фролов В.А.

ПОВЫШЕНИЕ ТОЧНОСТИ В ЧИСЛЕННО-АНАЛИТИЧЕСКОМ МЕТОДЕ ДЛЯ ЗАДАЧ ПОТЕНЦИАЛЬНОГО ОБТЕКАНИЯ ПРОФИЛЯ С ПАРУСНЫМ ЗАКРЫЛКОМ

Численно-аналитический метод (ЧАМ), разработанный автором [1-4], ранее применялся для решения задач обтекания безграничным потенциальным потоком двумерных тел различной формы. В работе [5] ЧАМ был развит для расчета течений вбли. зи экрана. Основная идея ЧАМ состоит в сочетании аналитического подхода на основе теории функции комплексной переменной и численного метода дискретных вихрей (МДВ). Точность МДВ зависит от количества дискретных вихрей *n*, и поэтому точ. ность ЧАМ также зависит от параметра *n*. Вопросы точности ЧАМ обсуждались в []. 5], где путем сравнения результатов ЧАМ с точными решениями показана его высокая точность. Однако, для произвольных тел, для которых отсутствуют точные решения, оценка точности результатов по ЧАМ остается открытым вопросом. Обычно в МДВ предлагается выбирать количество дискретных вихрей приблизительно такое же, которое дает хорошую точность для задач, имеющих точное решение. Такой подход являет ся приближенным и недостаточно обоснованным. В данной работе предлагается метод повышения точности ЧАМ на основе экстраполяции по Ричардсону (МЭР) [6]. МЭГ также позволяет оценивать точность результатов, полученных ЧАМ Ранее подобный метод был применен к тонким крыльям и компоновкам "фюзеляж-крыло" [7].

Описание ЧАМ приведено в работах [1-5]. Здесь же укажем, что ЧАМ приводил к необходимости решения системы линейных алгебраических уравнений (СЛАУ) с плотной матрицей. Неизвестными в этой СЛАУ является вектор-столбец интенсивно стей дискретных вихрей, расположенных только на части двумерного контура (рисунов 1).

На рисунке 1 иллюстрируется, как для профиля с парусным закрылком приме няется конформное отображение только для эллиптической части профиля [4], а неэллиптическая часть профиля и закрылок заменяются панелями с дискретными вихрями Выполнение условия Чаплыгина-Жуковского-Кутта на задней кромке парусного за крылка осуществляется с помощью расположения дополнительного вихря в центре ок ружности в параметрической плоскости и контрольной точки на расстоянии вычисли тельного радиуса вблизи задней кромки закрылка (рисунок 1).

На рисунках 2 и 3 приведены расчетные данные коэффициента подъемной силы для профиля E-003020 [4] с парусным закрылком в зависимости от обратной величины

78

суммарного числа дискретных вихрей - 1/n. В качестве примера выбраны относительные степени выдвижения парусного закрылка: $\overline{b'_{2}} = \Delta b_{2}/b = 0,2; 0,4$, где Δb_{2} – проекция хорды закрылка на направление хорды профиля; b - хорда изолированного профиля (рисунок 1). На рисунках 2 и 3 введено обозначение: а - угол атаки. Данные, представленные на рисунке 3, соответствуют таблице 1, в которой: n, n, - количество дискретных вихрей на одной дуге хвостовой части профиля и общее количество дискретных вихрей на профиле с закрылком, соответственно; $C_{\nu a}, C_{\nu a}, \tau, \tau, \tau, u \delta, \delta, -$ коэффициенты подъемной силы, компьютерные времена и относительные погрешности, полученные по ЧАМ без применения МЭР и с использованием МЭР, соответственно. Из результатов расчета коэффициента подъемной силы (рисунки 2, 3) можно сформулировать главный вывод о линейности зависимости: $C_{\nu a} = f(1/n)$. Линейность зависимости: $C_{\nu n} = f(1/n)$ проверялась методом наименьших квадратов (МНК). Результаты расчета по МНК на рисунках 2 и 3 показаны линией с кружками. Исследования на линейность зависимости $C_{ya} = f(1/n)$ были выполнены для комбинаций профиля E-003020 с парусным закрылком со степенью выдвижения $\vec{b}_{i} \in [0, 05; 1, 0]$, причем шаг по величине *b*, принимался равным 0.05. Для всех рассчитанных комбинаций отмечался линейный характер зависимости $C_{ya} = f(1/n)$. Это обстоятельство позволяет предложить формулу по МЭР в виде:

$$C_{ya} = \frac{1}{k-1} \left(k C_{ya}_{(kn)} - C_{ya}_{(n)} \right), \tag{1}$$

где k > 1 — целое число.

В работе были выполнены вычисления для значения k = 2, т.е. расчетная сетка измельчалась в два раза, что равносильно увеличению в два раза количества дискретных вихрей на дуге хвостовой части профиля. В этом случае формула (1) принимает вид:

$$C_{ya_{1}} = \left(2C_{ya_{(2n)}} - C_{ya_{(n)}}\right).$$
⁽²⁾

Если в качестве точного решения принять квазиточное (приближенное) решение C_{yaex} , полученное с помощью формулы (2) для достаточно большого количества дискретных вихрей n_{ex} , то можно проводить оценку точности ЧАМ для любого $n < n_{ex}$. В таблице 1 квазиточное решение $C_{yaex} = 3,76415$ для значения $n_{ex} = 800$ отмечено заливкой.

Таблица 1 — Экстраполяционное уточнение коэффициента подъемной силы для профи. ля с парусным закрылком (условия рисунка 3)

n	n _∑	Cya	τ. C	C	$T_{22}C$	$\delta, \%$	8,%
50	130	3,81015	2,36	3.76606	6,36	1.22	0,051
100	258	3.78828	4.0	3,76458	12,42	0,64	0,011
200	515	3,77645	8,25	3,76424	27,1	0,33	0,002
400	1030	3,77035	18,51	3,76420	72,17	0,16	0,001
800	2058	3.76727	53,33	3,76415	375.81	0,08	0
1600	4115	3,76571	321,95	_	_	0,04	_

В таблице 1 представлены относительные погрешности для прямого расчета и по формуле экстраполяции (2). В качестве точного значения выбиралось квазиточное значение $C_{vaex} = 3,76415$. Из данных таблицы 1 следует, что для всех значений $n \le n_a$ отмечается неравенство: $\delta_s << \delta$, т.е. формула (2) позволяет значительно повысить точность расчета по ЧАМ. Можно также отметить, что при заданной точности расчета можно получить существенную экономию компьютерного времени при применения МЭР (значения τ и τ_s таблицы). Данные таблицы 1 говорят о том, что применения МЭР позволяет получить очень высокую точность расчета, соответствующую предельному случаю: $n \to \infty$. Однако применение слишком большого количества дискретных вихрей даже при использовании МЭР может быть неоправданным с точки зрения вычислительной эффективности. Для ее оценки воспользуемся кригерисм, который бы предложен Флетчером [6]:

$$CE = \frac{1}{(\tau, \delta_{\gamma})}.$$
(3)

Критерий *CE* зависит уже от компьютерного времени, которое для современных операционных систем имеет случайный характер. Если расчеты проводить на одном компьютере, то можно предположить, что разброс значений времени счета для одного и того же варианта расчета будет незначительным. На рисунке 4 представлени расчетная зависимость вычислительной эффективности от количества дискретных вихрей при применении МЭР. Расчеты были выполнены для разных комбинаций "профиль-закрылок" и для разных углов атаки. Эти данные были обработаны МНК. Не смотря на случайный характер данных, можно видеть, что в пределах $n \in [25; 500]$ отмечается максимум на кривой CE = f(n) при $n \approx 350$. Расчеты показывают, что пр^в количестве дискретных вихрей на постоянной части профиля: $n \approx 350$ относительная погрешность расчета составляет $\delta_a < 0,004\%$, а компьютерное время счета $\tau_a < 50$ *с*.

80

На основании выполненных исследований можно рекомендовать МЭР.

Работа выполнялась при финансовой поддержке и в рамках аналитической ведомственной целевой программы "Развитие научного потенциала высшей школы (2006-2008 годы)" (РНП.2.1.2.4386).

Библиографический список

- Фролов В.А. Численно-аналитический метод решения задач потенциального течения около группы двумерных тел //Вестник Самарского государственного аэрокосмического университета, №1(5), 2004. – С.52-60.
- Фролов В.А. Решение потенциальных задач обтекания двумерных тел численноаналитическим методом //Вісник Харківського національного університету. Серія "Математичне моделювання. Інформаційні технології. Автоматизовані системи управління", № 661, випуск 4, 2005. – С.229-240.
- Фролов В.А. Численно-аналитический метод решения потенциальных задач обтекания тел вблизи экрана в присутствии пары вихрей //Труды XII Международного симпозиума «Методы дискретных особенностей в задачах математической физики» (МДОЗМФ-2005), Харьков-Херсон, 2005. – С.359-362.
- 4. Фролов В.А. Метод построения потенциального течения около симметричного профиля, образованного дугами эллипса и окружности //Управление движением и навигация летательных аппаратов: Сб. тр. XII Всерос. науч.-техн. семинара по управлению движением и навигации летательных аппаратов /Самар. гос. аэрокосм. ун-т. Самара, 2006. – С.260-265.
- 5. Галкина А.С., Фролов В.А. Подъемная сила двумерного контура вблизи экрана // Управление движением и навигация летательных аппаратов: Сб. тр. XII Всерос. науч.-техн. семинара по управлению движением и навигации летательных аппаратов /Самар. гос. аэрокосм. ун-т. Самара, 2006. – С.217-223.
- Флетчер К. Вычислительные методы в динамике жидкостей: В 2-х томах: Т.1: Пер. с англ. – М.: Мир, 1991.
- Фролов В.А. Повышение точности в методе дискретных вихрей для крыльев и комбинаций "фюзеляж-крыло" //Управление движением и навигация летательных аппаратов: Сб. тр. XI Всерос. науч.-техн. семинара по управлению движением и навигации летательных аппаратов /Самар. гос. аэрокосм. ун-т. Самара, 2003. – С.282-287.

Рис. 1. Использование конформного отображения в ЧАМ

Рис. 2. Зависимость коэффициента подъемной силы профиля с парусным закрылком (степень выдвижения 0.2) Рис. 3. Зависимость коэффициента подъемной силы профиля с парусным закрылком (степень выдвижения 0.4)

Рис. 4. Зависимость вычислительной эффективности от количества дискретных вихрей при использовании экстраполяции по Ричардсону