3. Windl Jaret al. Flihgt and Landing Trials with a combined DGPS/DGLONASS/INS System for high Dynamic Maneuvers and Precision Landings, ION GPS-98 Proc., Nashwille, 1998.

4 Х. Бьюнл, Л. Олейник. AN/ASN-128В объединенная доплеровская/GPS навигационная система для вертолетов// Navigation, vol.45, Autumn, 1998.

5. Тыртычко А.С. Авиационное оборудование вертолетов: Учебник для ВВАУЛ • М, 1981г. 6.Власюк Н.И. Радиоэлектронное оборудование вертолетов Ми-8Т и его летная эксплуатация: учебное пособие.- М., 1982

7. Франчук А.К. Радиоэлектронное оборудование вертолета МИ-24 : Учебное пособие, Сызрань, СВВАУЛ, 1995

удк 629.7

Морозов Л. В.

НЕОБХОДИМЫЕ УСЛОВИЯ ЧИСЛЕННОГО РЕШЕНИЯ КРАЕВОЙ ЗАДАЧИ РАВНОВЕСНОГО СОСТОЯНИЯ ГИБКОГО ТРОСА ВОЗДУШНОГО БУКСИРА

 Рассматривается горизонтальное прямолинейное движение самолета – носителя и соединенного с ним тибким тросом малоразмерного летательного аппарата (МЛА) в стандартной атмосфере при отсутствии ветровых возмущений. Форма и координаты конца троса определяются распределенной нагрузкой по всей длине троса и сосредоточенной силой на конце в точке крепления к нему МЛА. Для наглядности результатов предполагается плоская форма троса в вертикальной плоскости. Сосредоточенная сила Т к образована силой тяжести МЛА G и азродинамическими силами лобового сопротивления Х и и подъемной Y и в скоростной системе координат о х и у и с началом в точке крепления троса к носителю. Для удобства представления дифференциальных уравнений троса использована вспомогательная система координат о ξ ζ , оси которой противоположны осям скоростной системы координат и направление оси о ζ совпадает с направлением вектора ускорения силы тяжести g (рис 1). Напряженное состояние в каждом сечении троса на расстоянии s по его длине ст точки крепления к носителю определяется силой натяжения T (s), направленной по касательной к тросу под углом а (s) к оси о ξ.

Форма троса в системе координат о $\xi \zeta$ определяется системой обыкновенных дифференциальных уравнений [1]

$$dx = -- = f(x, q_{\tau}, q_{rn}, q_{rv}), \quad x_{\theta} = x(\theta), \quad (1)$$

$$ds$$

где $\mathbf{x} = (\mathbf{T}, \alpha, \xi, \zeta)$ – вектор фазовых координат, \mathbf{q}_{τ} – погонная сила тяжести троса, \mathbf{q}_{rn} и \mathbf{q}_{rv} – погонные аэродинамические силы сопротивления давления и трения, действующие соответственно по нормали к тросу и по направлению вектора скорости воздущного потока.

Погонные нагрузки q_{т п} и q _г, являются составляющими погонной аэродинамической силы сопротивления атмосферы

$$q_{ra} = c_x q d_r$$
, $q_{rv} = c_{xf} \pi q d_r$, $q = \rho V_{\infty}^2/2$,

где **с**_х и с_{хи} – коэффициенты сопротивления давления при поперечном обтекании троса и сопротивления трения соответственно, **q** – скоростной напор невозмущенного потока, **р** – плотность атмосферы, **V**_∞ – воздушная скорость МЛА, **d** _x – диаметр троса.

В начале троса (в точке s = 0) напряженное состояние определяется величиной силы T $_0 = T(0)$, углом $\alpha_0 = \alpha(0)$ и координатами левого конца троса ($\xi_0 = \zeta_0 = 0$).

Рис 1 Системы координат и схема сил тросовой связки

В конце троса длиной L в точке крепления МЛА действует сосредоточенная сила величиной T к под углом а к (рис. 1)

 $T_{k} = \left(\left\| T_{-k}^{2} \right\|_{k,\zeta} + \left\| T_{-k}^{2} \right\|_{k,\zeta} \right)^{0,5}, \qquad T_{k,\xi} = X_{n}, \qquad T_{k,\zeta} = Y_{n} - G_{n},$

Координаты правого конца троса $\mathbf{x}_L = \mathbf{x}$ (L), $\mathbf{x}_L = (\mathbf{T}_L, \alpha_L, \xi_L, \zeta_L)$

определяются интегрированием уравнений (1) с граничными условиями на левом конце

 $x_0 = x(0), x_0 = (T_0, \alpha_0, \xi_0, \zeta_0)$ Равенству интегрируемых параметров T_L, α_L и априорно заданных T_k, α_k соответствуют значения параметров управления $u^* = (T^*_0, \alpha^*_0),$ являющихся решением одноточечной двухпараметрической краевой задачи. Она сводится к минимизации функции невязки F(u) на заданном множестве U варьируемых параметров $u \in U$

$$u^* = \arg \min F(u),$$
 (2)
 $u \in U$

$$u = (T_{0}, \alpha_{0}), \quad U = \{ T_{0} : T_{0} \in \Delta T; \alpha_{0} : \alpha_{0} \in \Delta \alpha \},$$

$$\Delta T = [0, T_{max}], \quad \Delta \alpha = [-\pi/2, \pi/2], \quad T_{max} \ge G_{r} + G + T_{k}, \quad G_{\tau} = q_{\tau} L, \quad (3)$$

$$F(u) = [(T_{L} - T_{k})/T_{k}]^{2} + [(\alpha_{L} - \alpha_{k})/\alpha_{k}]^{2}.$$

Таблица 1. - Параметры тросовой системы

L,M	d ,, MM	p, ,r/cm ³	G _T ,	G, н	Х _а , н	Ү _в , Н
100	3	7,8	54,1	19,6	30	0

Пря таких условиях минимизируемая целевая функция невязки F(u) является вышуклой Унимодальной функцией двух переменных u=(T₀, α₀) (рис. 2) с замкнутыми линиями уровня вокруг точки минимума (рис. 3) в пределах рассматриваемой области определения (3).

Рис. 2. Поверхность целевой функции

Рассматривается метод нулевого порядка Фибоначчи для покоординатной минимизации функции F(u) [2]. Исходя из алгоризма метода, в процессе одномерной минимизации по каждой переменной

$$\aleph_{opt} = \arg \min F(\aleph),$$

 $\aleph \in K$

$$K = \{ \aleph : \aleph \in \Delta \aleph_0 \}, \quad \Delta \aleph_0 \in [\aleph_{\min}, \aleph_{\min}], \quad F^* = F(\aleph_{opt}) \}$$

естественным образом учитываются ограничения на область изменения аргумента. Метод позволяет с гарантированной точностью є 6 определить отрезок содержания минямума

 $|\Delta\aleph_n| \leq \varepsilon_0, \quad \aleph_{opt} \in \Delta\aleph_u, \quad \Delta\aleph_n = [\aleph_n \min, \aleph_n \max].$

Он формируется за фиксированное число шагов в в результате построения сходящейся последовательности вложенных отрезков $\Delta\aleph_i \subset \Delta\aleph_{i-1}$, $i = 1, 2, \dots n$, начиная с исходного отрезка $\Delta\aleph_0$ с заданными предельными границами. Число шагов в является наименьшим порядковым номером числа Фибоначчи n_0 которое определяет величину козффициента λ пропорционального деления отрезков $\Delta\aleph_{k:i}$

$$\min \{ f_{\mathbf{u}} \times \varepsilon \} \ge 1, \quad \varepsilon = \varepsilon_0 / |\Delta \aleph_0|, \quad \lambda = f_{\mathbf{u} - 1} / f_{\mathbf{u}},$$
$$f_1 = f_{1-1} + f_{1-2}, \quad j = 3, 4, \dots, n, \quad f_1 = f_2 = 1.$$

Количество обращений к вычислению значений целевой функции составляет N=n+2.

 В процессе покоординатной минимизации поочередно по параметрам Т₀ и α₀ на каждом шаге т итерационного процесса формируется убывающая последовательность значений целевой функции F_m^{*}≤F_{m·1}^{*}, m=2,3, (рис. 4). Наиболее интенсивно зависимость F_m^{*}=F^{*}(m) изменяется на первых шагах итерации. Для каждой зависимости F^{*}(m), начиная с соответствующей ей номера шага m^{*}, процесс уменьшения целевой функции прекращается и значения минимумов F_m^{**}=F^{*}(m≥m^{*}) остаются неизменными. Эти значения минимумов целевой функции являются предельно достижимыми при численной минимизации.

При численном решении краевой задачи критерием прекращения итерационного процесса является достижение минимумом целевой функции F_m^* заданной величины ε_F Из рис.4 видно, что не для всех значений параметра є выполняется условие прекращения итерации: $F_m^* \leq \varepsilon_F$. Для некоторых значений є предельно достижимая величина минимума F_m^* превышает заданную точность ε_F и итерационный процесс решения краевой задачи не прекращается. Это показывает существование корреляции между точностью определения минимума целевой функции при одномерном поиске є и точностью решения краевой задачи ε_F . На рис. 5 приведены верхняя граница $\varepsilon_m \, \epsilon_x$ изменения параметра є, $\varepsilon \in [0, \varepsilon_{max}]$, для всех значений которого выполняется условие прекращения итераций при достижении заданной точности $F_m^* \leq \varepsilon_F$, и соответствующее границе $\varepsilon_m \, \epsilon_x$ число обращений S* к вычислению целевой функции.

Таким образом, устанавливается взаимосвязь между точностью определения минимума целевой функции $\varepsilon \in [0, \varepsilon_{max}]$ и точностью решения краевой задачи ε_F , при достижении которой обеспечивается конечный вычислительный процесс решения краевой задачи равновесного состояния гибкого троса воздушного буксира.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Салтыков Н. Е. Гибкие нити в потоках. Киев.: Наукова думка, 1974.
- 2. Васильев Ф. П. Численные методы решения экстремальных задач. М.: Наука, 1988.

УДК 531/534; 629.783 : 523.3

Седельников А.В., Бязина А.В., Антипов Н.Ю.

ИСПОЛЬЗОВАНИЕ ФУНКЦИИ ВЕЙЕРШТРАССА – МАНДЕЛЬБРОТА ДЛЯ МОДЕЛИРОВАНИЯ МИКРОУСКОРЕНИЙ НА БОРТУ КОСМИЧЕСКОГО АНПАРАТА

Вопросу моделирования микроускорений посвящено много работ как отечественных, так и зарубежных авторов в виду значимости проблемы микроускорений для космических технологий [1].

В данной работе исследуется возможность аппроксимации уровня микроускорений с помощью фрактальной функции Вейерштасса - Мандельброта [2]:

$$W(t) = \sum_{n=-\infty}^{n = +\infty} \frac{(1 - e^{ib^n t})e^{i\pi_n}}{b^{(2-D)n}}$$

где D - клегочная размерность функции (может изменяться от 1 до 2), φ_n - произвольная фаза (может изменяться от 0 до 2π), b - параметр, определяющий какая часть кривой видна, t - аргумент функции.