этом время сходимости в среднем составило порядка 450 с. По сравнению с методом ручной настройки ФК, время сходимости уменьшилось в 2 раза, а величина накапливаемой ошибки (ARMSE) уменьшилась на 2 порядка.

Библиографический список

1. Амелькин, Н.И. Кинематика и динамика твердого тела (кватернионное изложение) / Н.И. Амелькин. – Москва, 2000. – 64 с.

2. Пичужкина, А.В. Использование моделей геомагнитного поля в задачах ориентации искусственных спутников Земли / А.В. Пичужкина, Д.С. Ролдугин // Препринты ИПМ им. М.В. Келдыша. – 2016. – № 87.

3. Terejanu, G.A. Extended Kalman Filter Tutorial / G.A. Terejanu // University at Buffalo. – 2008.

4. Иванов, Д.С. Алгоритм оценки параметров ориентации малого космического аппарата с использованием фильтра Калмана / Д.С. Иванов, С.О. Карпенко, М.Ю. Овчинников. – Москва: ИПМ им. М.В. Келдыша, 2009. – 32 с.

УДК 629.78 : 681.51

Сомов Е.И., Бутырин С.А., Сомова Т.Е., Сомов С.Е.

НАВЕДЕНИЕ И УПРАВЛЕНИЕ МИНИ-СПУТНИКАМИ В НИЗКООРБИТАЛЬНОЙ ГРУППИРОВКЕ ЗЕМЛЕОБЗОРА

Введение. Для мини-спутников в составе низкоорбитальных группировок наблюдения Земли актуальны проблемы наведения, навигации и управления. Такие спутники имеют массу до 500 кг и крупногабаритные панели солнечных батарей для энергоснабжения

бортовой аппаратуры, в том числе системы управления движением (СУД) с бесплатформенной инерциальной навигационной системой (БИНС), которая корректируется сигналами навигационных спутников и кластера звёздных датчиков. Применение мини-спутников наблюдения на низких орбитах имеет ряд достоинств как в конструкции космического аппарата (КА), так и в задачах его миссии. Современные исследования, разработки и достижения по этой тематике представлены в обзорной статье [1], включая проблемы СУД как для оптико-электронных (SkySat), так и для радиолокационных спутников с синтезированной апертурой (Capella-36). Статья представляет новые результаты по управлению мини-спутниками в низкоорбитальных группировках при площадных съёмках.

Математические модели и постановка задачи

Применяются стандартные системы координат (СК) – инерциальная (ИСК, базис I_{\oplus}), геодезическая Гринвичская (ГСК, базис E), горизонтная (ГорСК, базис H), орбитальная (ОСК) и связанная с КА (ССК, базис B) системы координат с началом в его центре масс O. Используются также телескопная СК (ТСК, базис S) с началом в центре S оптического проектирования и СК поля изображения $O_i x^i y^i z^i$ (ПСК, базис F) с началом в центре O_i фокальной плоскости телескопа.

На поверхности Земли маршрут съёмки отображается следом проекций оптико-электронных преобразователей (ОЭП), составляя полосу захвата. Такому маршруту соответствует закон углового наведения КА, при котором происходит требуемое движение оптического изображения на поверхности ОЭП. Ориентация ССК в ИСК определяется кватернионом Λ и вектором σ модифицированных параметров Родрига (МПР). Ориентация ССК в ОСК определяется углами крена φ_1 , рыскания φ_2 и тангажа φ_3 в последовательности 312. Используются векторы угловой скорости ω и ускорения ε , а также обозначения {·} = col(·), [·] = line(·) и (·)^t, [×·] для векторов и матриц. Задачи статьи состоят в разработке законов наведения и управления мини-спутниками и их компьютерной верификации.

Законы наведения при сканирующей оптико-электронной съёмке

Авторы создали оригинальные аналитические методы синтеза законов наведения КА при *сканирующих* съёмках различных типов на основе вычислительных технологий космической геодезии при анализе поля скоростей движения изображений (СДИ) наземных целей на матрицах ОЭП с временной задержкой и накоплением (ВЗН). Вычисление кинематических параметров ориентации КА как явных функций времени выполняется на основе векторного сложения всех элементарных движений телескопа в ГСК с учётом перспективы наблюдения и задании начальных значений координат наземной цели и азимута сканирования.

Пусть векторы $\omega_e^s = \{\omega_{ei}^s\}$ и $v_e^s = \{v_{ei}^s\}$ представляют угловую скорость ТСК и скорость поступательного движения центра масс КА в ГСК, матрица $\tilde{C} = \|\tilde{c}_{ij}\|$ задаёт ориентацию ТСК в ГСК, а функция D(t) представляет дальность по оси визирования. Тогда для любой точки $(\tilde{y}^i, \tilde{z}^i)$ с нормированными координатами в фокальной плоскости вектор $\tilde{V}^i = \{\tilde{V}_y^i, \tilde{V}_z^i\}$ нормированной СДИ вычисляется как

$$\begin{bmatrix} \tilde{V}_{y}^{i} (\tilde{y}^{i}, \tilde{z}^{i}) \tilde{V}_{z}^{i} (\tilde{y}^{i}, \tilde{z}^{i}) \end{bmatrix} = \begin{bmatrix} \tilde{y}^{i} \ 1 \ 0 \ \tilde{z}^{i} \ 0 \ 1 \end{bmatrix} \begin{bmatrix} q^{i} \widetilde{v}_{e1}^{s} - \tilde{y}^{i} \omega_{e3}^{s} + \\ + \tilde{z}^{i} \omega_{e2}^{s} \ q^{i} \widetilde{v}_{e2}^{s} - \omega_{e3}^{s} - \tilde{z}^{i} \omega_{e1}^{s} \ q^{i} \widetilde{v}_{e3}^{s} + \omega_{e2}^{s} + \tilde{y}^{i} \omega_{e1}^{s} \end{bmatrix}.$$
(1)

Здесь при фокусном расстоянии f_e телескопа $\tilde{y}^i = y^i/f_e$ и $\tilde{z}^i = z^i/f_e$, функция $q^i = 1 - (\tilde{c}_{21}\tilde{y}^i + \tilde{c}_{31}\tilde{z}^i)/\tilde{c}_{11}$ и $\tilde{v}_{ei}^s/D(t)$. С применением (1), численного интегрирования кинематического уравнения и сплайновой аппроксимации получаются в явном виде значения векторов $\sigma(t)$, $\omega(t)$ и $\varepsilon(t)$ – закона углового наведения

КА как последовательности гладко сопряжённых сканирующих маршрутов (СМ) и поворотных манёвров (ПМ) [2, 3]. Созданы аналитические методы синтеза законов наведения для всех видов съёмки, включая площадной землеобзор с ортодромическими маршрутами и получение стереоизображений.

Осевые линии *ортодромических* СМ соответствуют геодезическим линиям заданной высоты над земным эллипсоидом при сканировании по дуге «геодезического круга». При такой съёмке $\forall t \in T \equiv [t_i, t_f]$ в точке $O_i = (0,0)$ должны выполняться два условия: (i) компоненты вектора СДИ $\tilde{V}_y^i = \tilde{W}_y^i \equiv W_y^i / f_e$ и $\tilde{V}_z^i = 0$ при заданной продольной СДИ W_y^i ; (ii) след оси визирования совпадает с дугой «геодезического круга» и вектор нормированной СДИ \tilde{V}^i ортогонален оси $O_i z^i$ ПСК. Созданные законы наведения при площадной съёмке основаны на ортодромических СМ, представленных векторами МПР $\sigma(t)$ в виде сплайнов 7-го порядка [4].

Предполагается, что матрицы ОЭП имеют режим реверса и площадки землеобзора формируются 3 либо 5 сканами. Здесь возникает задача синтеза закона наведения КА при его ПМ $\forall t \in T_p \equiv [t_i^p, t_f^p]$ с краевыми условиями общего вида

$$\Lambda(t_i^p) = \Lambda_i, \, \omega(t_i^p) = \omega_i, \, \varepsilon(t_i^p) = \varepsilon_i; \, \Lambda(t_f^p) = \Lambda_f, \, \omega(t_f^p) = \omega_f, \\ \varepsilon(t_f^p) = \varepsilon_f, \, \, \varepsilon'(t_f^p) = \varepsilon_f'$$

с символом (·)' локальной производной по времени, когда векторы ω , ε и ε' ограничены по модулю. При аналитическом синтезе такого закона наведения используются условия разрешимости задачи Дарбу и векторные функции $\sigma(t)$, $\omega(t)$, $\varepsilon(t)$, $\varepsilon'(t)$ получаются в виде набора гладко сопряжённых векторных сплайнов. В результате аналитически формируется единый закон наведения – программное угловое движение КА $\Lambda^{p}(t)$, $\omega^{p}(t)$, $\varepsilon^{p}(t)$ в ИСК при площадной съёмке. Законы цифрового управления ориентацией мини-спутника

В СУД мини-спутника применяется силовой гироскопический кластер (СГК) с 4 гиродинами (ГД), рис. 1. Вектор кинетического момента (КМ) *p*-го ГД имеет орт $h_p(\beta_p)$, а СГК – векторы нормированного КМ $h(\beta) = \Sigma h_p(\beta_p), \beta = \{\beta_p\}, p = 1 \div 4$, и управляющего крутящего момента

$$M^g(\beta,\dot{\beta}) = -H' = -h_g A_h(\beta) u^g, \ \dot{\beta} = u^g \tag{2}$$

с матрицей $A_h(\beta) = \partial h(\beta)/\partial \beta$ и одинаковым собственным КМ h_g каждого ГД.

Рис. 1. Схема СГК и область вариации КМ

При отсутствии внешних возмущающих моментов и балансе СУД по вектору общего КМ $G = J\omega + H \equiv 0$, где вектор кинетического момента СГК $H = h_g h(\beta)$, модель динамики ориентации спутника принимает простейший вид $\dot{\omega} = \varepsilon \equiv J^{-1}M^g$. Кватернион ошибки $E \equiv (e_0, e) = \tilde{\Lambda}^p \circ \Lambda$, где $e = \{e_i\}$, соответствует матрице ошибки ориентации $C^e = I_3 - 2[e \times] Q_e^t$, где $Q_e = I_3 e_0 + [e \times]$, и вектору $\delta = \{\delta\} = \{2 e_0 e_i\}$ погрешности ориентации, а вектор ошибки по угловой скорости $\delta \omega = \omega - C^e \omega^p(t)$.

При дискретной фильтрации вектора $\epsilon = -\delta$ получаются значения вектора ϵ_k^f рассогласования в моменты t_k с периодом $T_u, k \in N_0 \equiv [0,1,2,..)$, применяемые в цифровом законе управления СГК [3]

$$g_{k+1} = Bg_k + C\epsilon_k^f, \quad \widetilde{m}_k = K\left(g_k + P\epsilon_k^f\right);$$
$$M_k^g = \omega_k \times G_k + J(C_k^e \epsilon_k^p + \left[(C_k^e \omega_k^p) \times\right] \omega_k + \widetilde{m}_k).$$

Далее вектор M_k^g аналитически распределяется в вектор u_k^g командных скоростей ГД.

Рис. 2. Съёмки окрестностей Ормузского пролива и Стамбула

Рис. 3. Закон углового наведения КА #1

Рис. 6. КА#3, ошибки СУД и скорости ГД

Компьютерная имитация

Исследована баллистическая схема группировки из 72 миниспутников при трёх КА в окрестности каждой из 24 плоскостей солнечно-синхронных орбит высотой около 600 км. Имитация площадной съёмки выполнена для 2 стратегически важных районов Земли – ОАЭ с Ормузским проливом и акватории Мраморного моря с окрестностями Стамбула, рис. 1 – 6. При имитации использовалась модель движения мини-спутников с массой 250 кг и СГК на основе 4 ГД с КМ $h_q = 10$ Нмс при периоде управления *T_u* = 0,25 с. Планирование съёмки каждой локальной площадки из 3 сканов каждого КА выполнялось с условием достижения наивысшего качества получаемого изображения. На рисунке 2 представлены ортодромические сканирующие маршруты КА#1 (три розовых скана), КА#2 (три жёлтых скана) площадной съёмки территории ОАЭ и сканирующие маршруты КА#3, КА#4 площадной съёмки Ормузского пролива. Назначенные значения долготы Ω восходящего узла (ВУ) орбит всех четырёх КА и моменты времени начала первого скана представлены в [5]. Здесь отсчёт времени движения КА выполняется от момента его прохождения ВУ очередного витка орбиты. На земной поверхности длина сканов равна 150 км, ширина одного скана с учётом перекрытия составляет 15 км, а общая ширина площади съёмки равна 90 км. На рисунке 3 представлен синтезированный закон наведения КА#1 в виде явных функций времени. Ошибки СУД КА#1 и скорости ГД при реализации этого закона приведены на рис. 4 с участками съёмки, выделенных розовым цветом.

На рисунке 5 приведена карта с тремя площадками съёмки пролива Босфор и Мраморного моря, каждая с тремя СМ, которые выполняются тремя КА – левым (КА#1, розовые сканы), центральным (КА#2, жёлтые сканы) и правым (КА#3, синие сканы). Здесь центральный скан КА#2 имеет длину 150 км и ширину 15 км, с учётом перекрытия сканов каждая площадка имеет размер 150 × 44,5 км², а три таких смежных площадки – общую площадь 150 × 131,8 км². На рисунке 6 представлен закон наведения КА #3, а ошибки СУД КА #3 и скорости ГД при реализации этого закона наведения – на рис. 7 с участками съёмки, выделенными синим цветом. Результаты имитации подробно представлены в авторской статье [5].

Заключение. Рассмотрены проблемы наведения и управления ориентацией мини-спутников в низкоорбитальных группировках землеобзора. Кратко описаны методы синтеза законов наведения, основанные на явных аналитических соотношениях, которые связывают движение изображения в фокальной плоскости телескопа с пространственным движением мини-спутника. Представлены разработанные законы наведения для выполнения площадной съёмки и результаты компьютерной имитации.

Библиографический список

1. Crisp, N. System modelling of very low earth orbit satellites for Earth observation / N. Crisp, P. Roberts, F. Romano [et al.] // Acta Astronaut. – 2021. – vol. 187. – pp. 475–491.

2. Somov, Ye. In-flight verification of attitude control system for a land-survey satellite at a final of its manufacturing / Ye. Somov, S. Butyrin, T. Somova, S. Somov // IFAC-PapersOnLine. -2018. -, vol. 51, N_{0} 30. - pp. 66–71.

3. Somov, Ye., Butyrin S., Somova T. Guidance, navigation and control of a surveying satellite when an area imagery for disaster management / Ye. Somov, S. Butyrin, T. Somova // Math. Eng., Sci. Aerosp. 2019. – vol. 10, № 3. – pp. 433–449.

4. Somova, T. Attitude guidance and control, simulation and animation of a land-survey satellite motion / T. Somova // Journal of Aeronautics and Space Technologies. -2016. -vol. 9, No 2. -pp. 35-45.

5. Сомов, Е.И. Согласованное наведение и управление миниспутниками в низкоорбитальных группировках космического землеобзора / Е.И. Сомов, С.А. Бутырин, С.Е. Сомов, Т.Е. Сомова // Изв. Самар. научн. центра РАН. – 2023. – Том 25, № 2. – С. 88–96.